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greater than the radius of the ball, then a, and a2 are nonover-

lapping groups of eigenvalues; otherwise the dissociation is less than

or equal to the radius and al and a, are not distinguishable groups.

By computing the dissociation for various a, and a 2, we may compute

our desired partition of a.

The results of this thesis are of two kinds. First, we compute

upper and lower bounds on the dissociation which improve bounds in the

literature. Both upper and lower bounds are achievable or nearly so.

The upper and lower bounds are often close together but occasionally

far apart. Our second set of results quantifies this last statement

by assuming a probability density on the set of matrices and computing

the likelihood that the bounds are far apart. This approach leads to

numerous other probabilistic results, such as the distribution of the

condition number of a random matrix, and the distribution of the distance

from a random matrix to one with a given Jordan form. We discuss the

relevance of this probabilistic model to finite pre, on calculations.
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A Numerical Analyst's Jordan Canonical Form

James Weldon Demmel

ABSTRAC T

What does it mean to compute an eigendecomposition of an uncertain

matrix? Because of measurement errors and roundoff errors, one must typi-

cally compute the eigenvalues and eigenvectors not of a single matrix but

rather of a ball of matrices whose radius depends on the uncertainty in the

data. We approach this problem by asking how to partition the eigenvalues of

the matrices in the ball into nonoverlapping groups which cannot themselves

be further partitioned. More specifically, we define the dissociation of two

subsets ac and a2-=- \ ac of the set of eigenvalues c of a matrix T as the

smallest perturbation of T that will make some eigenvalue from a, and some

eigenvalue from 02 move together and become indistinguishable. If T is the

center of the ball of matrices, and the dissociation of a, and ax is greater

than the radius of the ball, then a, and a2 are nonoverlapping groups of

eigenvalues; otherwise the dissociation is less than or equal to the radius and

a, and a2 are not distinguishable groups. By computing the dissociation for

various a, and a2, we may compute our desired partition of a.

The results of this thesis are of two kinds. Flirst, we compute upper and

lower bounds on the dissociation which improve bounds in the literature.

Both upper and lower bounds are achievable or nearly so. The upper and

lower bounds are often close together but occasionally far apart. Our second

set of results quantifies this last statement by assuming a probability density

on the set of matrices and computing the likelihood that the bounds are far

apart. This approach leads to numerous other probabilistic results, such as

the distribution of the condition number of a random matrix, and the distri-
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A Numerical Analysts Jordan Canonical Form

James Weldon Demmel

Chapter 1: Introduction

Given a complex n by n matrix To known only to within a tolerance t>O,

what does it mean to compute an eigendecomposition of To? By knowing To

only to a tolerance e we mean that To is indistinguishable from any matrix in

the set

T(V) a IT:II To - TII < , (1.1)

(II T 11 denotes some norm of the matrix T; we will specify the norm later.)

We would like to produce an eigendecomposition which is valid in some way

for all matrices in T(c). and gives as much information as possible about all

matrices in T(e). This seemingly simple goal leads us along several interest-

ing paths which will now be explored.

First some notation. An eigendecomposition of a matrix T will be writ-

ten

T = Ses- 1  (1.2)
where 9 is a block diagonal matrix 9 = diag(9.. S6). T's spectrum will

be denoted by o(T) or merely o it T is clear from context, and St's spectrum

6
by vi for short. Thus a = tja . If ar contains m eigenvalues (counting multi-

1

plicities) we write #(t)= .

The following sequence of examples will illustrate the difficulties encoun-

tered in computing an eigendecomposition of T(c) for different values of e.

Consider the following matrix, which is essentially in Jordan canonical form:
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1.001
0 100 (1.3)

To = 0
0

-1J

(blanks and 0 both denote zero entries). This decomposition tells us several

things: that To has 4 distinct eigenvalues at 1.001. 1. 0, and -1. that each

nonzero eigenvalue has a one dimensional invariant subspace (i.e. an eigen-

vector) associated with it, and that associated with 0 is one two dimensional

and one one dimensional invariant subspace.

Does this information remains valid for all matrices in T(r) as r

increases from 0? As soon as c becomes nonzero, it is no longer true that all

matrices in T(e) have a triple eigenvalue at 0, nor two invariant subspaces

associated with eigenvalues near 0. For example.

1
1.001

0 1ooT1 = £ o
0

-1J
has 3 simple eigenvalues at 0. 10%/, and -10'/t each with its own eigenvec-

tor, and

'1

1.001
o 100

0 C
0

has one triple eigenvalue at 0 with just one three dimensional invariant sub-

space associated with it.

Thus, all matrices in 7(c) (for v small enough) have three eigenvalues

near to 0 which together have a three dimensional invariant subspace associ-
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ated with them. We cannot, however, identify them individually because they

could all simultaneously equal 0 (in the case of To); their only identities are

as members of a cluster of three.

As a increases to .0005, matrices occur in T(e) which no longer have two

simple eigenvalues around 1:

1.0005 1'
1.0005

0 100
Ts= 0

0

To has two eigenvalues at 1.0005 associated with a two dimensional invariant

subspace and for 700 but arbitrarily small this subspace cannot be split into

two one dimensional subspaces. Thus, when c exceeds .0005 (but not .005).

T(t) has one three dimensional invariant subspace with three eigenvalues

indistinguishable from 0. one two dimensional subspace with two eigenvalues

indistinguishable from 1.0005. and one simple eigenvalue at -1.

In particular, one may draw three disjoint simple closed curves (Jordan

curves) in the complex plane, one around 0. one around 1. and one around -1.

such that any TET(.0005) will have three eigenvalues clustered strictly inside

the first curve, two inside the second, and one inside the third. Furthermore,

it is impossible to draw any larger number of such curves such that each one

will strictly contain a fixed number of eigenvalues of each TET(.0005). This

last statement is true because within T(.0005) there is a matrix (T7) with a

double eigenvalue at 1.0005 and a triple eigenvalue at 0.

For values of c exceeding .005. say .01, the clustering of the eigenvalues

changes again. The matrix



4

1.001
0 100

74- .01 0
0

has simple eigenvalues at 1.001 and 0, and double eigenvalues at 1 and -1.

Looking at the eigenvalues as functions of the entry containing .01 (the 3.4

entry), that T 4 has a pair of eigenvalues at t10V44T = ±1 when T4,4 = .01.

Thus, no Jordan curve can be drawn which separates the eigenvalues into dis-

joint regions as was done in the case of T(.0005) or for T(Ve) with smaller z.

This is because the eigenvalues "near 0" can no longer be separated from the

eigenvalues near -1 nor 1. and neither can the eigenvalue at 1.001 be

separated from 1. Thus, one Jordan curve must be drawn containing all the

eigenvalues.

In the case of T(.0005) we could find a matrix (T) with a single multiple

eigenvalue within the region bounded by each Jordan curve. It seems natural

to think of all matrices in T(.0005) as being small perturbations of one with a

double eigenvalues at 1.0005, a triple eigenvalue at 0. and a simple eigen-

value at -1 (T3). The existence of Ts also provides a simple explanation for

not being able to distinguish the three eigenvalues near 0 or the two near 1.

Is it possible to find a matrix with a sextuple eigenvalue in (.01)? More gen-

- erally, given a T(e) and a clustering of eigenvalues which can not be refined

by drawing more separating Jordan curves, is it possible to find T's in T(r)

which have single eigenvalues in place of each cluster? The answer is no. We

and independently Wilkinson have produced examples such as [Wilkinson4]
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To =t2i 1,
2471

where for e>i 4 (77<<1) one Jordan curve around the entire spectrum of T(r)

must be drawn, but where r must exceed something of order 2>>n4 before a

matrix with a single quadruple eigenvalue can be found in T(a). We call the

eigenproblem for T(r') (1<C,<17 2 ) Q posed, because while no nonempty

proper subset of the eigenvalues is distinguishable (by being separable by a

Jordan curve from the remaining eigenvalues), matrices in T(e) cannot be

thought of as perturbations of some particular matrix in T(t) with a single

quadruple eigenvalue. The problem of locating the nearest matrix with just

one eigenvalue is called the "nearest completely defective matrix problem."

The central problem in this sequence of examples has been how to clus-

ter the eigenvalues into distinguishable groups, how to nane the eigenvalues.

There are at least two notions of clustering for eigenvalues. So far we have

sought a collection of Jordan curves IJJ such that the region bounded by

each Ji contains the same number of eigenvalues (counting multiplicities) of

each TET(). This number of eigenvalues will be called the content of J4.

The easiest way to see how these curves depend on T'o and c is to consider

the set o(T(c)) of aL eigenvalues of aL TcT(z). a(T(t)) is an open set and can

be written as the disjoint union of its connected components i(TVe)). Around

each at(T(c)) one can draw a Jordan curve Trt with ar(T(s)) strictly inside J.

and all other aj(T(t)) strictly outside. These Jordan curves cluster the eigen-

values of T0 into regions in a way that also clusters the eigenvalues of each

Tel(z). This notion of naming an eigenvalue by the component of a(T(z)) in

which it lies will be called region cluster&.



There is another useful notion of clustering or naming. It will be

described briefly here, with the formal definition left to the next chapter.

Let X be an eigenvalue of To. and let T(z) be a continuous path starting at

T(O)= To and remaining in T(c) for all z>O. Think of X, as a function of z,

varying continuously as a function of z. As long as

A(z) o,(z) for all z and j ()
N(z) can be unambiguously identified with Xt. If (0) is true for aUl paths T(z)

in T(s), then X, represents a cluster (of content 1) for all matrices in T(s).

This definition makes sense because as long as k-(z) never equals Xj(z). it

can be identified by naming it by the k and the path T(z) whence it came.

If, on the other hand. there is a path T(z) in T(c) and an z0 such that

N(xO)fXj(xG), then we put Nj and X, into the same cluster. In this way, a

unique clustering of a is constructed. This clustering method will be called

path cluster ng. It will be shown in the next chapter that given T(r), this

path clustering always produces at least as refined a clustering as does

region clustering.

For numerical reasons to be discussed in a moment., one may add

another constraint to the clustering of eigenvalues. Consider

= 1 :1 )1 1 W (z) -

As long as z in T(e) is less than c(z)=( r4-x7+l-)/ 2z for tiny z, the two

eigenvalues must remain simple. However, as v gets close to e(z). not only do

the two eigenvalues get close, but the similarity transformation S(z) which

exhibits the decomposition in the last equation gets more and more ill-

conditioned. That is, as v-oc(z), 11 S(z)ll I S(z)-111 -.-. The ill-condition of

S(z) is numerically significant because it means computing S(z)AS(z)-l in

floating point arithmetic is apt to lead to large errors (this phenomenon will
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be discussed more in Chap. 3). Thus, one may add the constraint to a cluster-

ing that the matrix S which exhibits the decomposition must have a condi-

tion number less than some tolerance X.

X =)V. 1 lS 11 • 11S -1ll < z .

At this point the reader might object to example (1.3) on the grounds

that the 2 by 2 block

[1 00]

is "obviously" separate from the blocks containing 1. 1.001, and -1, because

the off diagonal zeroes are "obviously" sacred. We can quantify this intuition

by using only the condition number of the best conditioned diagonalizing

similarity x(S) which displays the eigendecomposition as in (1.2): if C(S)<k,

then the decomposition is acceptable, otherwise it is not. In the case of

(1.3). which is already diagonalized as much as possible, we may take S= so

i(S)=I, the smallest possible value of i(S) for any S. This criterion, which

generally allows a finer clusterir4 than the scheme in (1)-(3). can be used to

decompose matrices in preparation for computing functions of them, such as

the exponential. (This type of decomposition will be discussed further in

Chapter 3.)

Let us review the discussion so far by describing a program to compute

the eigendecomposition of an uncertain matrix.

(1) Given To and c. we must cluster the spectrum of the matrix into groups.

As stated above, there are two possible criteria for performing the clus-

tering. Whichever one is chosen, it will turn out that we need only con-

sider clustering o(T)=aUv2 into two disjoint pieces. Given such a clus-

tering we must be able to compute the largest I such that



Region austering: there is a Jordan curve or curves J dividing
the complex plane into two regions such that the groups a, and
ag remain on opposite sides of J for all TET. or

Path austseing: for all paths T(z) in T,, j(x)Ok.(z) for all
X4(O)Eo;, and for all z.

This largest F will be called the (region or path) dissociation between a, and

u, and denoted by dissz(aj.a2.T 0,reg on) or dissE(0 lX2, ToPath) (or

dissj(aj.u2) if both the choice between "region" or "path" and T0 are clear

from context). The subscript E indicates that perturbations are measured

using the Euclidean norm. We will also consider dissx(l . oZ), where perturba-

tions will be measured using the 2-norm (these norms are defined in the next

chapter). A better known synonym for dissociation is separation, but separa-

tion has already been used for related quantities [Stewart. Varah] which will

be considered in the next chapter.

(2) Given To. r and a clustering a = LJot, how ill-conditioned must ST be if it

exhibits the eigendecomposition

T = Srdiag(9,..... eb)S?

where FeT(s) and o(St) is identified with o? If it must be too ill-

conditioned, then we need to combine the at from step (1) into larger

groups.

(3) Given a cluster a, which contains more than one distinct eigenvalue and

cannot be split. is there a rwT() all of whose eigenvalues within this

group are equal? If so. this matrix (or at least its existence) should be

reported to the user as output; if such a TEr(z) does not exist, the user

should be told that this part of his problem is ill-posed. This problem is

addressed by Ruhe and KFgstrdm [Ruhe2. KYgstrdml], and we will not

pursue it in this thesis.
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Now we describe the contributions of this thesis to the solution of this

problem. We were not, alas, able to solve the problem completely, but we

have made substantial progress and our results are applicable to other prob-

lems as welL

The results are of two kinds. Chapters 2 through 5 analyze the dissocia-

tion and compute both upper and lower bounds for path and region dissocia-

tion. Both upper and lower bounds are attainable or nearly so for various

classes of matrices. The upper and lower bounds are usually close, but can

be very far apart. Chapters 6 through 8 take a probabilistic approach to

analyze how likely the bounds are to be close or far apart, and show, for

example, how to compute the probability that all the matrices in T(a) will be

completely diagonalizable. Chapter 9 examines the applicability of the proba-

bilistic model to finite precision calculations. More specifically, the results

are as follows.

Chapter 2 further discusses the two notions of clustering (region and

path) described above. In particular we show

diss(a1 . ca,. path) 2t diss(al , a2 . region)

and that we can choose a matrix norm that makes the two dissociation meas-

ures unequal. We also define the simple dissociation measures which will be

combined to produce bounds on diss(o1, .a 2 , region) and diss(al, ag .path).

We derive basic properties of these measures, in particular how they behave

under similarity transforms of the matrix, and a "divide and conquer" pro-

perty that makes them easier to compute when the matrix has a olock diago-

nal structure. We also present an upper bound on dissg(l, as. path) and

diss((a, a, . patth) based on one of these measures.
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Chapter 3 solves the problem in step (2) above by computing an ST

whose condition number is within a factor of v'T of best possible (b is the

number of partitions), and by computing explicit upper and lower bounds on

the best possible condition number which differ by at most a factor of b. We

also discuss the possibility of partitioning E subject solely to the criterion

that the condition number of the diagonaizing similarity be less than a

threshold.

Chapter 4 presents a new lower bound on diss2(al . , egigon) which is

sharper than the previously best bound, compares it to other known bounds,

and discusses when it is likely to be sharp. Combined with the upper bound

of chapter 2 this yields the inclusion

upper bound a diss(l , az , path) L diss(a I, 2, region) x lower bound

Chapter 5 analyzes how far apart the upper bound of chapter 2 and the

lower bound of chapter 4 can be, and presents worst case examples which

show how far apart the bounds must be. We also compute diss2 (o1 . aa) and

dissr(al, q2) exactly for normal matrices, in which case all four notions of

dissociation (path or region, 2-norm or Euclidean norm) are equal.

Chapter 6 presents a geometric/probabilistic model of the problem, by

defining certain sets in matrix space which are the sets where the eigenprob-

lem becomes difficult. We discuss the algebraic and geometric properties of

these sets, which are algebraic varieties, and put a probability measure on

matrix space which lets us analyze what fraction of matrix space consists of

hard problems.

Chapter 7 uses the model of chapter 8 to compute probability distribu-

tions of the smallest distance
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from a random matrix to one with a given rank (such as the nearest

singular matrix),

from a random matrix to one with a given Jordan form (such as the

nearest matrix with a double eigenvalue), and

from a random polynomial to one with a given zero structure (such as

the nearest polynomial with a double zero).

Chapter 8 uses the model developed in chapter 6 and the results of

chapter 7 to analyze when the bounds discussed in chapters 2 through 5 are

likely to be accurate. We show, for example, that the ratio of the upper to

lower bounds on disst(a1 , o1) cannot exceed K>l except on a set of matrices

of probability proportional to K-2.

Chapter 9 investigates the usefulness of the probabilistic model of

chapters 6 and 7 for analyzing the performance (speed and accuracy) of

algorithms for matrix inversion, eigendecompositions, and polynomial root

finding. A paradigm for analyzing performance is presented, which, when

applied to matrix inversion, yields a lower bound on the probability distribu-

tion of the relative error in Gaussian elimination. The model, because it

ignores the effects of finite precision arithmetic, fails to provide any useful

information at all about certain algorithms whose performance depends

strongly on the effects of finite precision arithmetic. We show how extending

the model to take finite precision arithmetic into account could be used to

measure how many problems can be solved as a function of the amount of

extra precision carried in intermediate computations.
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Chapter 2 Preliminary Definitions and Lammins

.1I Introduction

In this chapter we introduce the notation and dissociation measures

used in the rest of the thesis. These dissociation measures will be used later

in the thesis to construct upper and lower bounds on diss(ol . 02). These

upper and lower bounds can be far apart; just how far apart is the subject of

chapters 5 and 8. However, it is unlikely that they are very far apart;

chapters 6 and 7 will present a natural model for "picking a matrix at ran-

dom" which we will use in chapter 8 to make this assertion precise and prove

it.

The rest of this chapter is organized as follows. Section 2.2 discusses

diss(a , ag, region) and diss(al , a2. path). diss(al , a2. path) must always be

at least as large as diss(a1 , . a2, region) although they may indeed differ in

certain circumstances. We also show that they provide enough information to

cluster the eigenvalues in the way discussed in chapter 1. Section 2.3

discusses the canonical form we use for matrices. Sections 2.4 and 2.5 define

the dissociation measures JI PJJ (P a projector), sep(A.B). and seph(A.B)

and discuss their basic properties. In particular, sep(A.B). sepx(A.B) and

II PII share certain scaling and "divide and conquer" properties which we

later exploit to compute relationships among them.

2.2 The Difference between diss(a . a, region) and diss(a, a2. poth)

This section discusse the difference between diss(al, a. region) and

dius(a'. ag . path), proves that diss(ol, as . path) A! diss(ol, a',. region), and

shows why they provide suficient information to compute the decomposition

of chapter 1.
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Let us restate the definition of diss(a',. as,. region). The definition

depends, of course, on the matrix norm 11 - 11 which defines the shape of

T() = IT: II T-ToIlj <zj" Consider the set u(T(r)) of all eigenvalues of all

matrices T in T(c). a(T(r)) is an open set and can be written as the disjoint

union of its connected components. a, and ag, being sets of igenvalues of To.

must lie in these connected components. Let al(T(t)) be the union of those

components containing points of a, and O2 (T(r)) be the union of the com-

ponents containing q2. If al(T(e)) and a2(T(r)) are disjoint, then we can draw a

Jordan curve J(r) having oa(T(r)) strictly inside and a2 (T(c)) strictly outside.

As we increase r. al(T(r)) and av(T(e)) will grow from tiny neighborhoods

around the eigenvalues when t is near 0 and eventually intersect for v

greater than some Y, at which point the curve J(c) no longer exists. This Y.

the supremum of the set of r for which separating curves 1(r) do exist, is the

definition of diss(ol , a2, region) (note the implicit dependence on the norm

Now we define diss(al , a2. path). Let T(z) be a continuous path starting

at T(O)=T 0 and remaining inside T(r) for all zO. Let X0 =[X1 .  X, ] be

some ordering of To's eigenvalues, possibly with repeated entries for multiple

eigenvalues. We wish to define X(z)=[X1(z). A,(z)] so that X(z) is a list of

the eigenvalues of T(z) and a continuous function of z. This is possible since

the eigenvalues are continuous functions of the matrix. The only ambiguity

arises when some some T(zo) has a multiple eigenvalue X(z 0)=?e(zo) (say).

In this case one may arbitrarily choose which eigenvalue to call Xl(z) and

which to call Ag(z) for z>zo (this arbitrariness will not affect the definition of

dissociation). Suppose that A 1(z)=A(z 2 ) for some path T(z) and possibly

distinct z, and xg. In the language of the last paragraph. this means that the

connected components of o(T(c)) containing X, and A must coincide, since
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both contain the point A(zj)=Ae(z 2 ). Said another way, if Xleo, and X2eo2 ,

then diss(al, a , regton)<e, because X, and X2 belong to the same region

cluster of T(c). For path clustering we make a more stringent requirement

on A(z). that A(z 0)=A(z 0 ) for a particular value of z 0 and some path T(z).

In other words, X(z) and Ae(x) must be able to achieve the same value simul-

taneously. Now let Y be the supremum of the set of c such that for all paths

T(z) in T(c). X1(z) never equals AQ(z) for any X(O)=Xea1 and any

A(0)=XgEao. This i is the definition of diss(al. a2, path) (note the implicit

dependence on the norm I I I I ).

Why have we bothered to draw this distinction between

diss(al , a2 . region) and diss(a , a Izth)? The example in the next para-

graph demonstrates that the two notions of dissociation can indeed differ.

provided we are allowed to choose a matrix norm I I other than I III and

I II I. We do not know if diss(o'. a2, region) and diss(al , 2a, path) can differ

if l I ll is one of II " or I ;I " I I this is an interesting open question.

For our example, we choose

To [-- 101
and a norm • Iji whose unit ball is a very narrow ellipsoid pointing in the

I003
direction. For example, we may take

Ill TI 12 a B(I T1212 + I Tgjll + I Tl-T'l") + - Tjj+T1

where B>> 1. The idea is that the unit ball in the I II III norm contains only

matrices close to a multiple of the identity, so that points in T(c) look like
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0o]
plus an c or smaller multiple of the identity. For r near 1. we get essentially a

pencil of matrices with eigenvalues J1+x , -1+z., 1x I !C 1. Thus, the region

corresponding to X1=1 is a small neighborhood of the disk of radius 1 cen-

tered at 1. and the region corresponding to 4=-1 is a neighborhood of the

disk of radius one centered at -1. These regions overlap at the origin and so

diss(Gl, a2, region)-.i. However. X, and Aq can not be made equal by pertur-

bations of this size; indeed A1-4. remains close to 2 until c gets close to B.

Therefore diss(ol . a2, path) can be arbitrarily larger than

diss(al o 2 . regwn) if we are allowed to choose Ii III other than LI and

Ir.

It is true for any norm flI , however, that

diss(al, o2, path) ! diss(al , a2. region)

simply because if two distinct eigenvalues can be made equal by a perturba-

tion of size diss(ol, a2, path), then no Jordan curve can be drawn separating

the regions of the plane in which they lie.

It remains to show why being able to compute diss(u,. v2 . path) (or

diss(al, , region)) is sufficient to cluster the spectrum completely. By

clustering the spectrum completely, we mean finding a partition

E = .. l. .... 0. b or T0's spectrum such that

Region Clustering:

E is the finest partition for which we can find Jordan curves J. surround-

ing disjoint regions of the complex plane containing ;(T(t)) (ot(T(r)) is

the component of o(T(r)) containing at).

Path Clustering:

1 is the finest partitioning for which no two distinct eigenvalues XtEat
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and A ceaj can be continuously transformed to a common value X along

some path T(z) in (e).

E is well defined (in both cases) because of the following property: if El and

E_ are any two partitions satisfying the stated criterion (for paths or

regions), then the partition Elr E2 (the coarsest common refinement) also

satisfies the criterion. Thus, E may be uniquely defined as the intersection of

all partitions satisfying the criterion. (The set of all partitions satisfying the

criterion is never empty, since it always contains the trivial partition E=Jaj.)

Now note that diss(a l . a2. region) (or diss(al . u2 . path)) is sufficient to

determine if E=jaj .a2l satisfies the criterion.

.3 Schur Canonical Form

Throughout this thesis we will ask questions of the form:

"What matrix T possessing property P minimizes 11 T-TIJ ?"

where property P depends only on the Jordan canonical forms of T0 and T. It

will be useful to know what transformations we may perform on T0 that

either do not change this minimum distance, or change it in an easily meas-

ureable way. We will use two distance measures, the 2-norm II and the

Euclidean (or Frobenius) norm ., which we now define.

Let

tll

denote the Euclidean length of the n-vector z. Then II TII is defined as

11 TIh su j1 ..,R Tit =

II TII jr is defined as

I I T ll I I T III)
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Another definition of E we will need later is the following:

II TIz m (tr(TT'))'"2 (2.1)

This expresses I II z as the norm induced by the inner product

<A.B> i tr(AB) (2.2)

These norms have the following well known properties [Wilkinson2):

IIABII !5 IjA l IIB Il (2.3)IIABIIZ:9 ilAll IIBIIAz
IIABliz! liAiljj JiBIJ

These last inequalities immediately imply

dissz(al , a2) ! dssz(al , 02) 4 -;V7 diss2 (a, a2) (2.4)

We also define the condition number of the nonsingular matrix S as

i (s) M II SH 1s-'ll
We may now ask how much our answer to our minimum distance ques-

tion changes when we change To to SToS- 1 :

lemma 2.1: Let IllIlI denote either l' or II ' E. If 6 = in !11 T-TOcI[,
T

where the inflmum is over matrices T possessing property P. then if S is

nonsingular 6 s = inf IIl T-SToS-'111 satisfies

-( - c 3S S 5 .-I ( s ) .( 2 .5 )

Proof: Since property P depends only on the Jordan canonical form, T' has

property P if and only it ST'S' does as well. F'rom (2.3) we see

" ' 1'OI ! 11ST'S-'-sToS'li !9 Ill T'-Tl'j c(S)
sc(S)

whence follows (2.5). Q.E.D.

In other words, transforming To to SToS - 1 can only change the

minimum distance by a factor of at most x(S). We will exploit this property
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systematically throughout this thesis.

In particular, if i(S)=I, the distance cannot change at all. It is well

known that x(S)=1 if and only if S is a scalar multiple of a unitary matrix.

Schur's lemma, which we quote below, tells us that unitary transformations

are enough to put any matrix into upper triangular form:

Lemma 2.2 (Schur's Lemma): Given any n by n complex matrix T there is a

unitary matrix Q such that QTQ-I= U is upper triangular. Furthermore. Q

may be chosen so that the eigenvalues appear on the diagonal of U in any

prescribed order.

Proof: See [Isaacson].

These two lemmas tell us that we may assume without loss of generality

that our original matrix To is of the form

where a(A)=al and a(B)=a2 . We will occasionally have need of a related uni-

tary canonical form where A is upper triangular but B is lower triangular.

This form is obtained from (2.6) by reversing the order of the last dim(B)

rows and columns of To.

P.4 sep(A.B) and Projectlns

Projections and their norms have been used throughout the literature as

measures of the sensitivity of an eigenvalue to perturbations [Schwarz.

Kato2. Kahanl, Ruhel, Wilkinson2, Wilkinson3j, so it should be no surprise

that we use them here, too.

There are several equivalent ways to define the projection P associated

with al. We will use the following two:
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As described in the last section, we assume To is in the form (2.8), where

a(A)=ol, a(B)=a02, and a, n = 0. We also assume B is lower triangular. Let

nA=dim(A) and nB=dim(B). Now consider the system of linear equations

AR -RB = C (2.7)
which we want to solve for R. It is easy to verify that if we renumber the

entries of the nA by nB matrices R and C so that the first column is num-

bered 1 to nA from top to bottom, the second column from n4 +1 to 2nA. and

so on, then equation (2.7) can be rewritten as [Varah]

(AOI - 18Br)R ' re +.Bpf' = C' (a 8 )

0 denotes the Kronecker product, and R' and C' are the reordered versions

of R and C (they are n A -n B dimensional column vectors). The matrix +A.9 is

a square nA.nB dimensional upper triangular matrix with diagonal entries

N.(A)-Xi(B). In other words. A and B have a common eigenvalue if and only

if *IAgB is singular, a case we rule out by insisting a fle = n. For example, if

B= B J is3 by3, then

.A B l -B z1'I -B s31I11

*A.B = A-B .2 2- (2.9)
A-B 38."I

Thus, we may solve (2.7) for R given any C. Now observe that

P [1RI P. (2.10)

so that P is a projection. Since

PT TP 0A (2.11)

P projects onto the invariant subspace belonging to al. Note that

IIPIl' 11 + IIRII II I-PI 2.
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Now define S as

S [I-7]=[s1 1s 2 ) , (2.12)

where S1 consists of the first nA columns of S ([I 0]) and S2 consists of the

remaining nB columns ([-RT I]r). Then it is easy to verify that

S-1 ToS = [ BI (2.13)

In fact, any S' which diagonalizes To as in (2.13):

S'.- ToS' = 4B' (2.14)

with a(A')=al and a(B')=a2 is easily shown to be of the form

S' = S. D21(.5

where D, and D2 are conforming nonsingular matrices. Conversely, any S' of

the form (2.15) satisfies (2.14).

Given S as in (2.12). we express its inverse as

S-1 L.(S-1)(2)I (2.16)

where (S-1)(0 contains as many rows as St contains columns. Then P may be

written

P = S1 .(S-)(1) ; (2.17)

This is equivalent to (2.10).

These facts will be important in chapter 3, where we exhibit D, and D2

which minimize the condition number of S'.

A scaling property of 11 P11 analogous to the scaling property in lemma

Z.1 follows from this last expression for P:

lAmma Z. If P is the projector of To corresponding to a,. and P' is the pro-

jector of UTo U -1 also corresponding to a,. then
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1iT- )1 PI]-! (U). IJP'11

Proof: If P=S'(S-')(1), then P'= US -((S-)(1)U-') = UPU- 1. The result follows

by taking norms. Q.E.D.

Now that we have defined the projection P, we turn our attention to

sep(AB). Following Stewart[Stewart], we define

Definition 2.4 The separation of two matrices A and B is denoted sep(AB)

and equals

sep(AB)= inf IIAR - RBI (2. 19.a)R O IIrII,

-- 1+ 11X~l ) -1 (2.19.b)

= the smallest singular value of lAB (2.19.c)

= the distance (measured either with ] or II) (2.19.d)

from *A.B to the nearest singular matrix

If A and B are clear from context, we will abbreviate sep(A.B) by sep.

sep(AB) has several important properties which we now enumerate.

First of all sep(A.B)=sep(B.A); this is because 4 'A.B can be obtained from

-*,g. by simply reordering the rows and columns. More importantly we have

Lemma 2.5: sep(A.B). 11 P11 and 1l C11 z satisfy the following inequalities:

I11P1" 2!61 + 11I c S__._} 1 + 11 Tall, ' (2.20)
sep8  sep e

1 PI) ! 1 + 1 l.__!S 1 + II Toll, (2.21)
sep sep

Proof: From (2.8) follows 11Rl1: iZ C1ll/sep. Since IIPI' 1 + [1RI ,

(2.20) follows. (2.21) is simply a coarsening of (2.20). Q.E.D.
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Thus, sep(A.B) (with I Toil Z) provides an upper bound on the norm of

the projection associated with either A or B, and conversely, II PIJ provides

a lower bound for sep(A.B).

The next property shows that sep satisfies a property analogous to

Lemma 2.1. We could hardly expect to be able to use sep to help measure dis-

tances (and dissociation) if it did not behave the same way under transfor-

mations as do distances.

ILmma 26 ([StwartD:

sep (.B) _! sep(SAAS;'.SBBSj') i sep(A,B)'(S).(S) (2.22)
wC(SA)*w(SB&)

Proof:

sep(SAAS11.SBSI) = inf SAASI R -RS 3 BSj E

ROO JIRJJ1f

= i IISA(A(Sj'RSB) - (Si'RSB)B)Sil1L
ROOI IIRIJE

!9 1 S II'l SI I!n1 A(S -IRS ) - ( S '1RS s)B E

IISA I HI SII 1 .- II SII 1ll i 1( ) - ) 1
ROO II Z1RSfIl ,

= w(SA)4xSD)-sep(A.B)

This proves the second inequality of (2.22). The first inequality follows by

symmetry. Q.E.D.

The next lemma shows that we may apply the "divide and conquer" para-

digm to computing sep(A.B) when either A or B is block diagonal. We write

A = A when A is block diagonal with blocks A.

Lemma 2.7 [Smwrt]:
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sep( . eBj) = min sep(A.B,) (2.23)
t j (4

Proof: It suffices to show sep(A.Bi9B2 ) = min sep(A.B). From (2.9) we see
t

that if B is block diagonal, so is + A.B with diagonal blocks +AA. Since the

singular values of any block diagonal matrix are the singular values of the

blocks, the results follows directly from (2.19.c) in Definition 2.4. Q.E.D.

Lemmas 2.8 and 2.7 together tell us that if A and B can both be com-

pletely diagonalized by not too ill-conditioned similarities SA and SB (that is.

neither ic(SA) nor ic(SB) is very large), then sep(A.) differs from

rninIlX(A) -Xj(B)l by the not too large factor ic(SA)-tc(SB). The expression
tJ

mninjXj(A) - .j(B)I. the smallest difference between an eigenvalue of A and
t4

an eigenvalue of B. is the coarsest possible measure of the dissociation

between a(A) and o(B). We record this fact as

IAmma .& If Sj-ASA=diag(k (A)) and Sj'BS=diag(j (B)), then

min Aj(A) -Aj(B)j
rnn IK(A) - X(B)I sep(A.B) 2t )•

V 10(SA) - 10B)

Proof: Combine Lemmas 2.0, 2.7 to obtain the lower bound, and Definition 2..d

to obtain the upper bound. Q.E.D.

We will show in chapter 8 that the likely situation is that A and B are

diagonalizable with reasonably well conditioned similarities so that

minN(A) -Xj(B)I is a reasonably accurate estimate of sep(A.B) and
44

dissg(o1, . up).

We present one more application of the divide and conquer paradigm

used in Lemma 2.5: if A and B are block diagonal, the computation of R

where AR - RB = C can also be broken into smaller parts. We illustrate when

both A and B have two diagonal blocks. The system of equations
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[A1  R11 R121 R11 R1 lB1  I C11 c12]
AR -RB[ r- A .JfRgl Raj 1 R21 R221 B21C 21 cCim

(where all blocks are of conforming sizes) breaks into four idependent sys-

tems:

A, RV - RiBj = CV .(2.24)

If A or B has more than two blocks, equation (2.24) still applies.

Z5 sepx(AB)

Another measure of the separation of two matrices is sepx(A.B). the

smallest perturbation to A and B which causes them to have a common

eigenvalue. sep(A,B) will be our upper bound on the dissociation between a,

and a2, and chapters 5 and 8 of this thesis will analyze how much sep and

sep,, may differ.

Modifying a definition of Varah [Varah] slightly, we define

Dfinition 2.9.

sep,(A.B) m inf max(iI (A-XI)-II -1. I (B-X)- 111 -1) (2.25.a)

= infmax( =,(A-X), a,(B-V)) (a25.b)
A

where an, denotes the smallest singular value.

Varah defines sep as the sum of the two singular values rather than the

maximum, so his sep, cannot differ from ours by more than a factor of 2. We

have modified his definition because it lets us state slightly sharper results

later on.

sepN(A.B) is clearly an upper bound on disso(a1 , a2, path). Of course,

there might be a general perturbation of To (not just one in A and B) of

much smaller norm than sep,\(AB) that makes an eigenvalue of A coalesce

with one of B, so in general sep(A.B) only provides an upper bound on

dissl(al, a. path). Since chapter 8 contains the rather surprising result
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that sep provides a not too pessimistic overestimate of this dissociation, we

record this fact in the following theorem.

Theorem Z1

sep(A.B) a dissg(c, .a, path)

V2 sep,(A.B) a dissz(a l . , path)

The rest of this section proves several properties of sepx that we will

need later. In particular, we will prove two lemmas analogous to lemmas as8

and 2.7. Since we are going to relate sep, and sep, it is important that they

behave similarly under transformations (lemmas Z.6 and 2.11) and divide and

conquer (lemmas 2.7 and Z 12).

F-irst, however, we present a characterization of sep, analogous to

Definition 2.4 of sep. The following lemma is essentially due to Varah [Varah]:

Lemma 2.11:

sep(A,B)!9 inf IIAR -RBII, -- 2 sep(A.B) (2.28)
,.,E ), IRII,

Proof: The infimum in definition 2.9 of sep is clearly attained for some X by

compactness. Thus, there exist unit vectors us and v such that

lep(A,B) = max (o'm,(A-X) ,m.(B-X))

= max (IIAA- lI . Ilv*B-vXll)

Let R=u . Note that rank(R)=1 and II Rji = II RI = 1. Thus

II AR - RB I I (A-)R -RR(B-)II, Z
(A II(-,)v" - u (v'B.-v*'\)l I

= 11 (M-Xu)'v'llW + 11 u(ij B-X)jl

c 2ep(A.B) .

This proves the second inequality in (2.26).
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To prove the other inequality, we again write R as ui*. where u and v

are unit vectors and uv* attains the inftmum in (2.26) (this is again possible

by compactness). Then as before

II AR-RB 11 t=jl(Au-Xu -* -u(v*B.-v,,,\) II z

We now exploit the alternative definition of I II given in (2.1) above:

jAR-RB II = trj[(Au-Xu)v* - u(vB--uX)][(Au-Xu)v* -u(v*B-v*A)]*j

- tr[(A' - B')(A' - B')]

= tr(A'A') + 2.Re tr(A'B'O) + tr(B'B')

= II A'l I + 2.Re tr(A'B') + II B'II I
Now if we choose A = i Bu (or u*Au). A' and B' are orthogonal:

tr(A'B'") = tr(u(v*B-v"X)(As-Xu)")

= tr(u (vBu-A)(Au -u).)

=0 .

Thus with this choice of X

II AR-RBI I = II (As-)u)v" II + 11 u(vOB-v*X)!

tmax (11(A-X)ujIS tIv*(B-X)II z)I

a" sepf(A.B)

as desired. Q.E.D.

An immediate consequence of the definition of sep(A.B) and this last

lemma is

iaumma 212-

sep(A.B) s; 2 sep\(A.B)

If dirn(A)=1. then

Sep,\(A.B) r. sep(A.B) = oa.(B- 1  • I) i 2 sep\(A.B)

where A=[al1 ]. An analogous inequality holds if dim(B)=l.



27

Proof- The first inequality follows from lemma 2.11 and the first line of

Definition 2.4 of sep. The second inequality holds because if dim(A)=1 then

the R in Definition 2.4 is either a row vector or column vector, and so neces-

sarily of rank one. Q.ED.

Just how much smaller sep can be than sepx is the subject of chapters 5

and B.

The next lemma shows that sep behaves similarly to sep under transfor-

mations.

lemma 2.13: Let k = max (x(SA) . (SB)). Then

sepx(A.B)it ,!C seN(SAASi 1 , SBSW') - sepA(A.B).. (2.27)

Proof: For anyX

(A (2.28)

" f(SAts -' - A) -'II

- II (A-x)- 111 '-(SA) - 1I (A-x\)-II -IX.
An analogous inequality holds for B and S 0 . The lemma follows directly from

these inequalities. Q.E.D.

There is an important difference between lemmas 2.6 and 2.13: while

sep.\ may change by k after a transformation. sep may change by as much as

e's. Although we do not exploit this difference further, it bolsters our conjec-

ture of chapter 8 that sep/ 11 T oll z is almost always bounded below by a con-

stant times (sep,/ II Toll )g.

The next lemma shows that the same divide and conquer formula holds

for sep,, with block diagonal A and B as for sep.
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Lemma Z 14:
sep,%(4A, SBj) = min sep(%(A. B) (2.29)

t j q

Proof: The singular values of a block diagonal matrix are the singular values

of the blocks. Thus

sepN((A . EDS,) = inf maX(an(6D( A)) am((B 1 X)

t J A t j

= ii m ax in (A -X) , d (B -))
04 \

= mi seP(A B.)

as desired. Q.E.D.

In analogy to Lemma 2.5 we have

Lemma 2.15: If SA1ASA=diag(Xt(A)) and Sg1 BS=dag(Xt(B)). then

min 1 4(A) -, (B)I min ? .(A) - Aj(B)
tj - a- sep(A.B) 2 - •)

Proof: The upper bound follows from the definition of sep and the lower

bound from the last two lemmas. Q.E.D.
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Chapter 3- Best Conditioned Diagonalizing Similarities

1 Introduction

In this chapter we assume a partitioning EY=a .  at I of a has been

chosen, and ask the following question: what is the best conditioned S such

that

S-ITS = diag(e, . 1eb) (3.1)
and oa(l9)=aj? We need to use the answer as a tool in later chapters.

Actually, it is as easy to answer a more general question: how ill-

conditioned must a matrix S be if its columns are constrained to span cer-

tain subspaces? We answer this question in order to find nearly best condi-

tioned matrices SR and SL that block diagonalize a given matrix pencil

T = A+XB, i.e. SE1 SR = 0 is block diagonal. We show that the best condi-

tioned SR has a condition number approximately equal to the cosecant of the

smallest angle between right subspaces belonging to different diagonal

blocks of 9. Thus, the more nearly the right subspaces overlap the more ill-

conditioned Sp must be. The same is true of SL and the left subspaces.

For our original problem T = A-V, the standard eigenproblem. SL = SR

and the cosecant of the angle between subspaces turns out to be the norm

I I P I of the projection associated with each subspace. More precisely, if Pt is

the projection associated with at. then

maxIIPII c(SaprruL) ! b • maxJ P iI (3.2)

where b is the number of blocks in (3.1). Furthermore, we can construct an

S. denoted SWWO, whose condition number (SwoO) lies in the bounds

given by (3.2): choose the rank(P) columns of SWM.,o which span the invari-

ant subspace belonging to ai to be orthonormal.
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In particular, if b =2 so that we are dividing T into just two blocks, then

we can compute an S (not SOp.to) such that

x(Sa-A) =I(S) II PHl + "V II Z
and

We will need this construction for our lower bound on diss2(al , a2) in the next

chapter.

The rest of this chapter is organized as follows. Section 3.2 defines the

notions of invariant subspaces and angles between them more precisely,

reviews some of the history of the problem, and summarizes the results of

the chapter. Section 3.3 shows how to decompose T into b=2 diagonal

blocks, and section 3.4 handles the case of ba3 blocks. Section 3.5 contains

the proof of a technical result needed in the proof of Theorem 3.1. Section

3.8 applies the main results to an error bound for computing a function of a

matrix, such as exp(T). Section 3.7 discusses the possibility of partitioning a

using only projection norms as a criterion. Finally. section 3.8 presents some

applications of the main results unrelated to eigenproblems.

Most of this chapter has been published already [Dernmel]. except for

sections 3.7. 3.8 and part of 3.4.

3.2 Deftitioms and Summary of Results

Two measures of the ill-conditioning of the eigenvalues of a matrix have

appeared frequently in the literature. One is the condition number of a

matrix S which (block) diagonalizes T under similarity ( i.e. S - ITS is block

diagonal), and the other is the norm of the projection matrix Pt belonging to

the spectrum of the L-th diagonal block of S - ITS (if the I-th block is I by 1.
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the norm of P is usually denoted 1/ si I [WYilkinson2]). Many authors have

shown that the larger the condition number of S, or the larger the norm of

P. the more sensitive to perturbations are at least some of the eigenvalues

of T. Bauer and Fike [Bauerl]. Kato [Kato2], Kahan [Kahanl]. Rube [Ruhel],

Wilkinson [Wilkinson2. Wilkinson3] and others have all contributed theorems

stating this result in different ways. Recently Sun [Sun] has extended many

of these results to regular matrix pencils.

Our goal in this paper is to show that these two measures of ill-

conditioning are nearly equivalent. We state our result in terms of angles

between subspaces because this makes sense for pencils T-A+B as well as

the standard eigenproblem T-A-XI: the condition number of the best S

which displays the block structure is within a small constant factor of the

cosecant of the smallest angle between a subspace belonging to one diagonal

block and the subspace spanned by all the other subspaces together. In the

case of the standard eigenproblem this cosecant turns out equal to the larg-

est of the norms of the projections Pi.

We exhibit a best S for decomposing T into two blocks and compute its

condition number exactly in terms of the norm of a projection (see part 2

below). This result was obtained independently by Bart et. al. [Bart] and

improves an earlier est*.nate of Kahan (Kahan1]. Wilkinson [Wilkinson2, p 89]

and Bauer [Bauer4] relate the two measures when S - 1 TS is completely diag-

onal; we generalize their results to diagonal blocks of arbitrary sizes in

theorems 3.3 and 3.3a below.

The angle between subspaces is defined as the smallest possible angle

between a vector u in one subspace W and a vector u in another subspace
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%%S .3) =min arccos IuI wheni seS'a,. Iiull = 1l1v = 1 1(3.3)

(0 will be discussed more fury later).

If 5. ..... E is a collection of subspaces, the space spanned by their

union is denoted span|S1 . ,.. P I.

With this preparation, let us consider the subspaces associated with the

block diagonal matrix SfiTSR = 9 = diag(.1 . , 0). where Ot is rt by c; r,

and ci must be equal unless T = A+XB is a singular pencil [Gantmacher].

From Si" TSR=9 follows TSR = S, 0 which implies that T maps the space SJ

spanned by the first c, columns of SR into a space 51 spanned by the first r,

columns of SL. Similarly, columns cl+ • ' +c,-I to c+ • • • +ci of SR span

a space S) that T maps into a space !q spanned by columns r 1 + - - • +4-.+l

to r1+ •• +rt of SZ, Stewart [Stewart] calls the pairs * . S1 deflating pairs

since they deflate T to block diagonal form. For the standard eigenproblem

T=A-X! we have nJ = 31 [Gantmacher] in which case they are denoted by S

and called invariant subspaces and then no generality is lost by assuming

SR = S, Henceforth we drop the subscripts R and L of S since they are

unnecessary for the standard eigenvalue problem and since our results

apply to each case separately for the general problem T = A+XB.

Our problem is to choose the columns of S to minimize x(S) subject to

the condition that the columns span the subspaces St. (It is not important

for the proofs of our results that the BF be deftned by an eigenvalue problem;

we ask only that the 54 be linearly independent and together span all of

euclidean space. Thus our results may be interpreted as results on one-sided

block diagonal scaling of matrices.) Our first result will be that by choosing

the columns spanning each subspace to be orthonormal. we will have an S

whose condition number is within a factor V4 of optimal where b is the

number of diagonal blocks of 0:
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X(SOMrWo) -j V 1(sa-W ) .(3.4)

SWMo denotes any matrix S whose columns are orthonormal in groups as

described above, and Sa.1 ,U15 denotes any matrix S whose condition number

is as small as possible. This extends a result of Van der Sluis [vanderSluis]

where all subspaces S9 are one-dimensional. Van Dooren and Dewilde [Van-

Dooren] have also shown the choice of SO~RO is nearly best, and in fact

optimal if the subspaces S are orthogonaL

Furthermore, we shall bound (SaRlHO) above and below in terms of the

angles between the subspaces 3' spanned by its columns. Let Ot denote the

smallest angle between 5' and the subspace spanned by all the other sub-

spaces together:

Ot =- O(S',. snl a ) (3.5)

We shall show

max (csc -t + Vrcsc tr i- 1) ! ic(Sawpjn ) (3.6)

ta

When b =2 (i.e. we have only 2 diagonal blocks) SMTHo is in fact optimal,

and

#SOro) = K(Sanzxa) = csc 0 + Vcsc'i -1 = cot 0,2 (3.7)

ScpruAr, is not unique, and we compute another S for the 6 =2 case which has

the optimal condition number and which further satisfies

In the case of the standard eigenproblem where S is the invariant subspace

belong to A. and St the invariant subspace for B.

For the standard eigenproblem we also have csc Ot = PjI, where Pt is

the projection associated with subspace i. It follows from (3.6) that the two
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measures of ill-conditioning x(SaMNAL) and rnax I P I I we wanted to showt

nearly equivalent can differ by no more than a constant factor.

m ax II P II S (S a_"j )!9 b • max 11 Pill (3.8)

.3 How to Decompose T into 2 blocks

In this section we show that the best conditioned S whose first c

columns span a given subspace S' and whose remaining n-c columns span

another given complementary subspace Se has condition number

x (SoPrA) = csc %Y + Vcsc= ' - 1 = cot 93/2 (3.9)

where 03 = O(S , SF). Note that we assume 3' and !f are linearly independent,

for otherwise S would be singular.

To prove (3.9) we will need a technical result, Theorem . 1. that bounds

the norms of submatrices of a positive definite matrix in terms of its condi-

tion number. Theorem 3.1 is a slight generalization of an inequality of

rielandt [Bauer2] and the proof technique used here yields several other ine-

qualities (Theorem 3.4) one of which (3.55) is an inequality of Bauer [Bauer3].

Let

HVCI
be a Hermitian positive definite matrix, partitioned so that A is n by n, B is

n by in, and C is in by mi. Let z = j] HI I I H-I I be the condition number of

H. Let X- 1/ denote any matrix such that x-X(x--1)* = .

Tmrem 3. 1: If H and w are defined as above, then

II (A-V2)*BC-hl " 2 -j - (3.10)
o +

or. equivalently,
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1 + II (A-V)BC-1/121 (3.11)
1 - 11 (A-V).BC-lU(.1

Furthermore. this bound is sharp. In fact, given any n by mn matrix Z such

that Z II < 1. both sides of inequality (3.10) are equal for the matrix

This theorem will be proved in Part 3.5.

We also need another definition of the (smallest) angle 0 between sub-

spaces that is more useful than the one stated in the introduction. As stated

there. 0 is the smallest possible angle between a vector in one subspace and

a vector in the other subspace (the largest possible angle may be much

larger than the smallest if the subspaces are not one dimensional). If S1 is an

n by c matrix of orthonormal columns which form a basis of S' and S2 is an

t by n-c orthonormal basis of the second space !f. then 0 may also be

expressed as [Davis]

*(S'. 52) = arccos II S'*SS21 = arccos sup I/yOS 1 S2z 1 (3.12)

= inf arccos I u~j
3.,

where the sup is over arbitrary unit vectors z and y. and where the inf is

over unit vectors u in SI and v in BF.

Now consider a candidate matrix S:

S O M IS, I So] (3.13)

where S, and Sg are orthonormal bases of 31 and 5 respectively. We may

describe every other possible S whose columns span W1 and St in terms of
S~yo:

SD = Somwo D = SwIo diag(DI . Da) = [SID, I StDe] * (3.14)

where DI is a nonsingular € by c matrix and Da is a nonsingular n -c by n -c

matrix. (3.14) states simply that any basis of 9! can be expressed as a
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nonsingular linear combination St D of the columns of one basis Si. We want

to know which D minimizes c(SD). We compute

X2(SD) = I(SD*SD) (3.15)

DI'D, DI'sI'SD2]
: 'D."Se"SID

1  D 2eD 2  I "
We may now invoke Theorem 3.1 with A-12 = DO1 , B = D*SS 2 D2, and

C - / 2 = D=-1 to find

1 + I1 S,1 S 211
gzSD - IIs1.S~l

= 1 + coso (0 -Ct -6g7/ 21 - cos5

= cot (75/ 2)

or

w(SD) 2 cot 0/2 (3.16)

If D, and D2 are unitary, it is easy to verify that we have equality in (3.16),

proving (3.9) with SavpTyjL = SaprHo as desired. Note, however, that SapTrfAL

is far from unique, since there are many orthonormal bases for a given

space.

It remains to show csc d = 11 P11 where P is the projection onto S1 paral-

lel to SF. Recall from section (2.1) that if we assume (without loss of general-

ity) that T is of the form (2.4?)

T ~AR -RB1

then any S which block diagonalizes T is of the form (2.10? and 2.129)

Also, the P which projects onto S' parallel to 52 is (2.6?)
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P = 10 0

where I P11 2 = 1 + 1 R11 2.

By choosing

D, = I and D2 = (I + ROR) - 1 2  (3.17)

where D2 can be any matrix such that D2D2 * = (I + ROR) - ' we obtain an

s Dj R(I + RR)-l21

= [s51 I S]

where S1 and S2 contain orthonormal vectors.

Thus

= arccos 11SIS 2 11 (0 <i3 it/2) (3.18)

= arccos II R(I + R'R)-1"2

so

csc S = (1 - cos 2 ,0)-V2 (3.19)

=( - Ii R(I + ROR)-'/Ill 2)-1/2

= (I - 1 (I + ROR)-v 2 R*R(I + ROR)-'II )-l/2

(since I1HII 2 = 11 HHIll for any matrix H)

= (1 - II R'R(I + ROR)-Il )-1/2

II RORII)-:
- (i- + IIRORII

= (1 + II RRII )1/2

=V 1+ IIRII'

= II Prd
as desired.
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It is possible to choose D, and D2 which are multiples of the identity and

also achieve the minimum condition number. We record this fact here

because we will need it in Chapter 4. Choose

D= I and D 2 ( (l+ 11Rf)-" 2 . 1 (3.20)

We will show that with this choice of D1 and D2 (S) attains its minimum

value. First pick unitary Q, and Q2 so that QRQI=diag(r,) is diagonal (ie.

the I R a[ r1 •• Xr. are the singular values.) Then

. [S.r JQ , 1. [D . rQr 1
S j QJQII 1 J1J D21jI Qdj

r 1
I diag( I

has the same condition number as S. and is the direct sum of 2 by 2 blocks

and I by 1 blocks. It is a simple matter to compute the largest and smallest

singular values of this new matrix, and to show in particular that

1 S 1 -II2 R + / jRI P + 1

and

115-1112 ='VII-RII +1 11 (IR II + V-1 -RI + 1-2 1) .

The results follows from multiplying these two expressions to get ic(S).

&4 Haw to Decompoue T into b Blocks when b >2

In this section we first consider partitioned matrices

S = [SI I S] (3.21)

where each submatrix Sj must span a given subspace 3' and show that S is

nearly best conditioned when each St's columns are orthonormal. Next we

bound the condition number of the best such S above and below in terms of

max csc i. where
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'Oj (9 sr~nj~ 1)(3.22)

F nely we will discuss a different choice of S (also discussed in the literature

[Smith,Wilkinson2]) which is harder to compute and has slightly different

bounds on its condition number.

Theorem 32: Let S be

S =IS, I ... I S6] (3.23)

where Sj contains ci columns.

If we choose the columns constituting St to be any orthonormal basis of

the subspace 9, then S will have a condition number no larger than V

times the smallest possible:

X"(S) !5 ' (SO,'..) (3.24)

Said another way, choose S so that SOS has identity matrices (of sizes ct by

c4 ) as diagonal blocks.

Proof: This proof is a simple generalization of the proof that by diagonally

scaling an n by n positive definite matrix to have unit diagonal, its condition

number is within a factor of nt of the lowest condition number achievable by

diagonal scaling [vanderSluis]. We generalize diagonal scaling for unit diago-

nal to be block diagonal scaling for block unit diagonal, Le. to have identity

matrices (of various sizes) on the diagonal. We show that a block diagonal

scaling with b blocks produces a matrix whose condition number is within a

factor b of the lowest possible condition number.

Assume St forms an orthonormal basis of S' and let D be a block diago-

nal nonsingular matrix whose blocks A) are ct by ct. Then any S' whose

columns S' span S can be written S' = SD for some D. Now
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max
n I[ S= %/ Iw DIIw tG(s) ' (3.25)

lo I A D-- = !1tmnn

where z is chosen so that liz. 1 = and Sz.JJ = rA(S)= the smallest

singular value of S, and w. is chosen so Iw.ll = 1 and

I D -Hw . II = ( With this choice of w. the factor I II I D-1itu Il

is at least one. Since D is block diagonal, u can be chosen to have nonzero

components corresponding to only one block of D. Thus.

IIw.w112 = IIW*,S*StWujj = Iju .%.uJ = 1. Since the largest singular value

0,.n(S) satisfies

a=r_(5) =,S,, S . 119,,'=" =l ="%

we get

V() = (S J(s) (3.26)v '(S) ams)-

Since (3.26) is true for any D. it is true in particular when SD = SaOnML.

Q. .D.

Van Dooren and Dewilde [VanDooren] have improved the factor v/ and

shown, in particular, that if the subspaces are themselves orthogonal, then

the above choice of S is in fact optimal.

In the case b =2 we expressed t(Sawnuw) in terms of csc 73, where d was

the smallest angle between 5' and SF. We can also bound r(S) here in terms

of the csc Ot, where 0% is the angle between ' and its complement sani3' S:

Theorem 13: Let T, S and csc d be defined as above. Then

max (csc 1h + N'csc,'O 1) (S) & (3.27)

or weakened slightly,
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max csc O& ic(S) ! b • max csc i (3.2)

Proof: This proof is based on a similar result of Wilkinson's [Wilcinson2. p. 89]

when all invariant subspaces are one dimensional. First we will prove the

lower bound and then the upper bound.

From (3.16) we know that any S (not just the one defined above) which

has one group of columns spanning S! has a condition number bounded from

below:.

x(S) cot 161/2 = csc Ot + N/csce r, - 1 (3.29)

Since (3.29) is true for all i. the lower bound follows easily.

We compute the upper bound as follows:

IC(S) = II SI II S'Ii &%T I IlS-'l (3.30)
since S VY < '." (as mentioned in the proof of Theorem 2). Using notation

analogous to (2.14) define the matrix P

P = S, (S-l)(t) (3.31)

(which would be the matrix projection onto S' for the standard eigenprob-

lem). Since St consists of orthonormal columns, (3.31) and then (3.19) yield

II (S-1)()IlI = II P I = csc o, (3.132)
Thus

11 s-ill" " .,il (S-T)O )' = -N tcsc (3.33)
tu'

and the upper bound follows. Q.E.D.

The lower bound in Theorem 3.3 has been proven by Bauer [Bauer4] in

the case when all invariant subspaces are one-dimensional.

The other choice of S discussed in the literature is scaled so that the i-

th diagonal block of SOS is csc 'l times an identity matrix of size ct by ct.

With this choice of S the i-th diagonal block of (SIS)-' has the same norm as
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the corresponding block of S*S. namely csc di. Smith [Smith] showed in the

case when all invariant subspaces are one-dimensional that this choice of S

is optimally scaled with respect to the condition number defined with the

Euclidean norm:

ICH(S) tS~ II 1 S' i H

More generally, with this choice of S, Theorem 2 is weakened slightly to

become:

Theorem 3.2wz With S chosen so that the i-tb diagonal block of SOS is csc 73t

times an identity matrix, we have

x(S) & b • c(SaprLA) . (3.34)

Proof: Similar to Theorem 3.2.

Theorem 3.3, on the other hand. becomes slightly stronger:

Theorem 13&. With S chosen as in Theorem 3.2a. we can bound r(S) as fol-

lows:

max (csc -a + VcscV , - l)!C (S)& <csc-d, (3.35)

Proof: Similar to Theorem 3.3.

The upper bound of Theorem 3.3a generalizes a result of Wilkinson [Wil-

kinson2, p 89] for one dimensional invariant subspaces. Note that the "spec-

tral condition numbers" 1/ 1s I used by Wilkinson and others

[SmithWilkinson2] are just csc d (or I I P I ) when the invariant subspaces

are one-dimensional. When csc it is large the upper bound in (3.35) is
131

comparable with the upper bound on ix(Sapnwl) given by Bauer [Bauer4,

Theorem VII] in the case of one-dimensional invariant subspaces.
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This choice of S is more difficult to compute than the S of Theorems 3.2

and 3.3 because of the need to compute the csc ai3. though not much more

difficult if the subspaces are all one or two dimensional.

3.5 Proof of Theorem 3.1

This theorem was stated in section 3.3.

Unit vectors z e C" and y E C' satisfying

y*(A-V )oBC-l/Z = II (A-11 2)*BC- 1 2 1 (3.36)

must exist. Use them to construct the unit vectors

S= A- 1 y/ IA-1,/I I. W = C- /2=/II C-" 2z . (3.37)
and

s(6) = rz sin-1 (3.38)

We want to consider H acting on the 2-dimensional subspace in which s (3)

lies. Now

ss (0)Hs (6) -; A (3.39)
implies

[z" sin3, w" cosO] BI "n3 I  A , (3.40)

or

sinS4 • z*AM + cos2 •5 wOCw + sirr3cos4 (*B*z + z*Bw) i A . (3.41)

To simplify notation, let a . z*A and c a w*Cw.

From (3.38) and (3.37) we know that

aBw = 11 (A 112)BC-1' 2 1l(11 A// 1 1 ' I C-fl II) (3.42)

= II (A-")BC- 1'1 j 1 IAV2= 1. II 11I
Since (Cl/)*Cl/ = C, we get c = W*CW = II (CV 2)*C'II = II C1 2W I2 _

Similarly, a r. = II s*Ax fI 1, so (3.42) becomes
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x*Bwu = 11 (A-112)*BC-vz[I • %- • (3.43)

Substituting (3.43) into (3.41) and rearranging, we obtain

L +(! _ cos2O + V-- 11 (A-112)OBC-wzI) sin2,6 -4A (3.44)

Since a0 was arbitrary, we can maximize the LH.S. of (3.44) over 15 yielding

c+Q / -( .+ _A (3.45)
( + N 9 a 2+ w II (A -)B C- I 1 A ,

or

11 (A -1 2 )*BC-, 2 1 C N(A - (c +=)/2)' - ((c -a)/) (3.48)II~-a- ((-3).48)l

Similarly, the inequality

X s* (1) Hs (4) (3.47)

implies

= (~4! " + (!:= cos26 + v- II (A- 1/ 2)"BC"II sin23 (3.48)

Minimizing the &H.S. of (3.48) over 4 we obtain

A 1= (±- - . + c (A-V')BC-' 2 I (3.49)

or, rearranging,

II (A-1vu)BC-1/uII (3.50)

Combining (3.48) and (3.50) yields

II (A-' 1 2)*BC-" 11' e rnin[v/(t - ) (c -A)/(z). 4(A- ) (A-c)/(t ))
All we know about =zAx a a is that X s a ! A and similarly X! <c a u)* PC -.

Thus

II (A-v2).BC-vhI " max min(vfa-A)(7-A)/-y7), V(A)-a)A-7)/(7)(3.51)

Since (a - \)/a is an increasing function of a and (A - a)/ a is a decreasing

function of a in the range Xa-%.A. we see the max in the last inequality
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occurs when the two arguments of the min are equal. This equality implies

(a -X) (y - X) = (A- a) (A- 7 ) (3.52)
or

a+'-= A+A . (3.53)

Substituting (3.53) into (3.51) yields

11 (A-L 2 )*BC-/ 2 1j jg mV(9 - -a/X)T A -9/ V,/A+ X.- 7-y (3.54)

=A-X
A + A

X+1
as desired.

Any 2 by 2 positive definite matrix whose diagonal entries are equal

shows the the inequality of Theorem 3.1 is sharp.

We now show that given ic and Z = (A-/12 )*BC-112 such that I Zfl < 1

and the inequality of the theorem is sharp, it is possible to construct an H

with the given constraints. Simply choose

A=I . C=1 and B=Z (3.55)
corresponding to the (arbitrary) choice A = 1 + II ZII and X = 1 - Zfl. It is

easy to verify that every inequality in the proof is sharp for this choice of A.

B. and C. Q.E.D.

Theorem 8.4: Let H. A. X. and i be as above. Define X-1 1 2 such that

X-1/2(X-1/2)0 = X - 1. Then the following inequalities are sharp:

IB81C-111 - -(ft'A - 1/ V') (3.56)2

II A-IBII !a L-(r" - 11/,,x) (3.57)

11 B1 !9-L(A-X)(3.58)
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II (-U2)8[I ; VX(3.59)

BI C -11 211 !g V1 , (3 .60 )

Proof: All the proofs are analogous to the proof of Theorem 3.1. To prove

(3.56), for example (also proved in [Bauer3]), choose z and y unit vectors

such that

*BC- ',= SCI-

and let

Consider H restricted to the two dimensional subspace in which

cosirJ

lies. The rest of the proof follows similarly to that of Theorem 3.1.

We can also show that given x and arbitrary R = BC- 1 such that (3.56) is

sharp, it is possible to construct an H with the given constraints. Simply

choose

C=1 , and B=R

corresponding to the (arbitrary) choice A = (ic + 1)/2 and A = (K + I)/2U. It

is easy to verify that every inequality in the proof is sharp for this choice of

A. B. and C.

Note that Theorems 3.1 and 3.4 are still true when A. B, and C are con-

forming submatrices extracted from a larger H (or QHQ with Q unitary)

since the bounds are monotonic in x (or A and X). In particular, if A. B, and C

are scalar Theorem 3.1 becomes an inequality of Wielandt [Bauer2].

8.6 Computung a FtncUon of a Matrix

In this section we want to show why a well conditioned block diagonaliz-

ing matrix S is better than an ill-conditioned one for computing a function of
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a matrix T. Assuming f(T) is an analytic function of T. we compute f(T) as

follows:

S(0)
f (T) = f (sOs-') = sf (e)s- ' = S s - 1 (3.62)

f (a.)

The presumption is that it is easier to compute f of the small blocks 9, than

of all of T. We will not ask about the error in computing f (0j) but rather the

error in computing e = S-ITS and fJ(T) = Sf()S-. In general, we are

interested in the error in computing the similarity transformation

X = Sy5-,.

We assume for this analysis that we compute with single precision float-

ing point with relative precision c. That is. when * is one of the operations

+.-. or/. the relative error in computing f I (a.) is bounded by e:

fl(ab) = (a,6) (1+e) where Ie I ! . (3.63)

Using (3.63) it is easy to show

Lemma &5: Let A and B be real n by n matrices, where nc < .1. Let IA!

denote the matrix of absolute entries of A: IA I = IAq 1. Then to first order

in c the error in computing the matrix product AB is bounded as follows:

Illf(AB) -ABI nclAI IBI (3.64)

Proof: See [Wilkinsonl].

Computing X = SYS - I requires two matrix products: Z = fl(SY) and

X = ft (ZS-1), where we assume S and S- 1 are known exactly. Applying

Lemma 3.5 to these two products leads to

LAmma .6: To first order in r

Il(SYs-5) -SYs-Il!z2n4 c(S)II YIIZ (3.65)
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Proof:

= Il f I(SYS-') -sis-, ii,

= III (SYS - ) -$(SY)S - 1+f(SY)S- 1 -SYS -' I I Is

&ll I f(SYS -1 ) - f(SY)S-1 I + fl(sY)s -1 - SYS-' I II

9ne II fI(SY)I IS-1l IIS +nr IISj I IIS- I II

& n r II SIl II Yll, II S-1 I E
(to first order in r)

!9 n'l oc(S) I I YllI
Q.KD.

Assuming this bound is realistic, it is clear that picking S to keep i(S)

small is advantageous. The error in computing similarity transformations of

matrices .s discussed in more detail in Wilkinson [Wilkinson2, chap 3].

3.7 On Projection Norms as a Partitioning Criterion

The analysis of the last section suggests that if the purpose of our eigen-

decomposition is to compute functions of matrices, then it may be sufficient

to compute the partition E=lo ..... . .of a subject only to the constraint

that II PtII be less than some threshold 2 for each i, rather than the more

complicated requirement that the dissociation between at and U ai be larger
lo

than some threshold r. This is because the error bounds depend only on pro-

jector norms. For example, it is trivial to compute the exponential of a diago-

nal matrix by exponentiating each diagonal entry, and any diagonal matrix is

decomposable by the projector norm criterion (all projectors are of norm

one). The more stringent dissociation criterion, however, would forbid any

decomposition of the identity matrix, which is clearly a bad idea. Klgstrdm

[K(str(m2] has used this partitioning criterion successfully for computing
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matrix functions.

There is, however, a small problem with defining E in terms of bounded

projector norms instead of the dissociation criterion: partitions defined by

bounded projector norms do not satisfy the intersection property described

in section 2.1. In other words, E1 = Jal Uaz, asl may be a legitimate partition

since 11 P, + P2 11 = 1 P3 11 <w . and Ee = JalUos. azi may be a legitimate par-

tition since I I P + P311 = II P 2fL < X. but E = El = $a, a2 , ous may not be

legitimate since P11 can be as large as I1P2 + P3 !l I Ii P2 l1 + ii P311 ! 24F.

Consider, for example.

=103T= 1 01j
with z2 a little less than X-2-1. al=JOI, a2=1lJ, and as=J-1J. A factor of 2 is

not bad, especially since it does not seem likely we can measure 11 PII or the

smallest 116T[I that accurately for a reasonable price. Nonetheless, it is

unfortunate that we lose the intersection property which makes the best par-

tition well defined.

&8 Applications of a Variation of Theorem 3.1

It is more convenient here to use a slight variation on Theorem 1, stated

as (3.56) in Theorem 3.4:

11 A-1BI !c L(-( - 1/ %rE).

Application 1: Cholesky without square roots. The square root free Cholesky

algorithm (triangular factorization) decomposes a positive definite Hermitian

matrix H into the product of a unit lower triangular matrix L. a nonnegative

diagonal matrix D. and L*:

H = LDLO
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We wish to bound the entries of L. Consider the following partitioning of the

decomposition:

From (3.88) we see

L1DIR4 = B

or

= (L1DI)-1B

=L* |(LIDIL* I)-'B

=L* A-'B .

Since L*I is unit upper triangular. the last row of R and the last row of A-IB

are identical. But the last row of RO is the conjugate transpose of a subdiago-

nal column of L. Thus

II subdiagonal column of LII = 11 last column of corresponding A-BI

all ll of corresponding A-BI.
and so Theorem 3.4 implies

I Isubdiagonal column of Ll -(- - 1/ VW)

A 2 by 2 example suggested by the proof of Theorem 3.4 (see (3.60)) shows

this bound is achievable.

This bound is tighter than the simpler bound

which is derived by considering the t,3-th entries of both sides of H = LDL*:

L4Db + L + positive terms = HK

This result can also be used to get a lower bound on (H) given its Chole-

sky decomposition.
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A similar application to Gauss-Jordan elimination appears in [Bauer3]

Application 2: Gram-Schmidt Orthogonalization Process. The Gram-Schmidt

process takes a set of independent vectors vt ELI. lgi!sm, and produces a

set of orthonormal vectors qt EC, 1gi!9m, where qj is a linear combination

of vI through vt and orthogonal to v l through i-I for i>1. We wish to bound

the coefficients of q, to qgi- (or V1 to %-I) in the expression for qt. We do this

by showing Gram-Schmidt to be equivalent to square-root-free Cholesky per-

formed on a certain matrix, and use Application 1.

The Grarn-Schmidt process expresses q1 as a linear combination of Vi

and q I through qt-1. Let V be the n by n matrix whose columns are the vec-

tors vi and let Q be the ni by mn matrix with columns q,. Then the Gram-

Schmidt process may be expressed succinctly as

V = QD1 2 U . (3.68)
where U is an n by n unit upper triangular matrix and D is an n by n nonne-

gative diagonal matrix. The entries of U are the coefficients we seek to

bound. Multiplying both sides of (3.88) on the left by their transposes, we

obtain

VV = TUDU (3.69)

U is the factor of ;V obtained by doing square root free Cholesky. Thus.

from Application 2 we see

Ii mperdiagonal column of UI ( v'TV - 1/%T ) , (3.70)

which is the desired bound.

If we wanted to express qt as a linear combination of v, through %

instead of v4 and q1 through qt-,. we would express the Gram-Schmidt pro-

ces as
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Q (3.71)
What is a bound for the columns of 0? Multiply both sides of (3.71) on the the

left by their transposes to obtain

D-WOL*vODj-1/2 = QOQ = I . (3.72)
or

() = - . (3.73)
C is the factor of (MV)l- obtained by doing square root free Cholesky start-

ing at the lower right corner of (irV)- ' instead of the upper left corner as is

usual. Thus, from Application 2 we see

II superdiagonal column of !9 - ( 1 (3.74)

since x(M) = x(M- 1) for all M. Thus, we get the same bound on the columns

of C as on the columns of U.
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Chapter 4: Lower Bounds on diss2 (0o . , region)

4.1 Introduction

In this chapter we present a new lower bound on diss(o , az, region)

which is sharper than previous lower bounds. In section 4.2 we present a his-

tory of previous lower bounds, in section 4.3 we present and prove our new

bound, and in section 4.4 we present examples when the new lower bound is a

good estimate of diss2(al. a2, region), and other examples showing how

badly the lower bound can underestimate diss2(al , z, region). These exam-

ples will be needed in chapter 8 on probabilistic bounds. Since we will only

be using the "region" based dissociation notion, we will drop the word

"region" from the arguments of the dist function for notational simplicity in

this chapter.

4.2 Previous Iower Bounds

We discuss three previous lower bounds in this section. The first two, due

to Dunford and Schwarz, and Bauer and Fike, are usually called inclusion

theorems because they give upper bounds on the perturbations in eigen-

values given the norm of the perturbation. We will use the results of Chapter

3 to show that these results are essentially identical and derivable from

Gerschgorin's Theorem (Isaacson]. The third result, due to Stewart, was until

now the sharpest known bound. We will discuss lower bounds on diss2(a , a2).

which are also lower bounds for dissjr(o , g) by inequality (2.4).

The first result is due to Dunford [Dunford, lemma 6] and Schwartz

[Schwartz, lemma 3]. Taken together. these lemmas show:

Theorem 4.1 (Dunford and Schwartz): Let T be completely diagonalizable

with eigenvalues Xq and corresponding projections P. If Xis an eilgenvalue of

T+E, then for some t
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IA- tI !S4 - mx 11Pill 11Ell

45
i I

In other words, the eigenvalues A' of T+E lie in circles of radius

4 max IPt El centered at the eigenvalues of T. From this result, it is

easy to derive the following lower bound on disse(a . ag):

Corollary 4.2:

min Ix, - xel
dissg(aj. ag) Alet

Proof: This condition assures that no circle around any Xlca1 can intersect

any circle around some XgEaz. Q.KD.

The Bauer-Flke Theorem has similar assumptions and conclusions:

Theorem 4.3 (Bauer and Mike): Let T be completely diagonalizable with

eigenvalues Xt and diagonalizing similarity S. If' Kis an eigenvalue of T +E.

then for some i

IX 1 !9 nfw t(S) 11Ell
S

where the inf is over all diagonalizing similarities S.

This theorem yield a Lower bound on dissg(l, ag) in the same way as

Theorem 4.1:

Corolary 4.4:

rain Pix - hl
au(,.g) Afte

2. inf IC(S)

Proof Analogous to Corollary 4.2.

We claim these two theorems are nearly equivalent because Chapter 3

showed that

" a= IIP 11, s i 'f (s) "c dim(T) • ,ma 11PP II1 . (3.8)

t
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so that the expressions in the denominators of the corollaries cannot differ

by more than a factor of 4 dim(T). Furthermore, the Bauer-Fike result is

easily derivable by applying Gerschgorin's Theorem [Isaacson] to the matrix

STS -1 + SES - ' = diag(k-) + SES- .

The drawbacks of these simple lower bounds on diss2(a, a2) are as fol-

lows. First, they assume that T is completely diagonalizable, and so do not

apply to defective matrices. Second. even if T is diagonalizable, the

maxl Pill term may be too large and so the lower bound too small because

of nearly equal eigenvalues in some irrelevant part of the spectrum. For

example, by making 17 small in

100 .01
100+1 (4.1)

0

(where al=JOI and a2=100.100+,1j). we can make the lower bound on

diss2 (o,, o) as small as desired, whereas dissB(0 1 . a,) actually equals .5 (we

will prove this later; the best E is nonzero in the lower right 2 by 2 corner

only).

The heretofore best lower bound on dissa(al, a) is due to Stewart

[Stewart]:

Theorem 4.5 (Stewart): Assume without loss of generality that T is of the

form

with u1=v(A) and ag = a(B). Let P be the projection corresponding either to

a, or ft. Then
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dis~l.ol tsep(AB) (4.2)
4 ) 11 P11

Proof: The proof seeks a unitary similarity of a special form which returns

T+E to block triangular form. The nontrivial part of this similarity satisfies a

matrix Ricatti equation which can be solved by an iteration which is a con-

traction as long as 11 Eli is smaller than the expression on the right hand

side of (4.2). The details of the proof are not needed in this thesis; see

Stewart [Stewart] for more information.

Actually, Stewart's proof only appears to show that sep(A.B)/ (411 PI ) is

a lower bound on diss2 (o t . . path). It will follow, however, from the com-

ments following theorem 4.8 below that it really is a lower bound on

dissp,(a,. a2, regon).

Stewart's bound is generally much tighter than the bounds of Dunford-

Schwarz or Bauer-Fike. We are pleased, therefore, to have found the improve-

ment in the next section.

4.3 A New Lower Bound on disse(u1 . 1)

Our improvement of Theorem 4.5 is based on an approach used by Varga

and Feingold [Varga] and more recently Meyer and Veselic [Meyer] to prove a

block version of Gerschgorin's theorem.

Theorem 4.6: Let T, A. B. and C be as in Theorem 4.5. Then

sepA(A.B) (4.3)
dissg( ,o1 ) Ii P11 + V4il Pj17- 1

Proof: If \ is an eigenvalue of T+E but not of T then

0 = det(X-T-E) = det(,-T) det(1-(A-")-E) = det(I--,-T)-'E)

implying that

1owwco a bl Ik (ionlg simi(X-T)-I[ 11 a Ell
Now we choose a block diagonalizing similarity S as suggested in (3.20) so
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that S-TS diag(A.B). (Note that the other S suggested in section 3.3

would yield diag(A.B') where B' is similar to B but could be otherwise much

different.) Thus

1! S' diag((X-A)- .(x-B)-') Sll -1 Ell

,(S) max (11 (-A)-Il . 11 (X-B)-ll ) 1I Ell

or

x(S)II Ell m mn (11 (X-A)-l1 -'. 11 (X-B)-111 -')
Just as the inequalities of Theorems 4.1 and 4.3 show that the eigenvalues of

T+E lie in circles centered at the eigenvalues of T, this last inequality shows

that the eigenvalues of T+E lie in certain regions around the eigenvalues of

T. And just as in Corollaries 4.2 and 4.4, we can derive a bound on II ElI such

that the regions belonging to a(A) and the regions belonging to a(B) remain

disjoint.

Indeed. as long the region

x(S)IIEll = 11 (A-A)-lll -1

remains disjoint from the analogous region for B. Ii Eli <diss2(al . OP). Ima-

gining these regions as functions of Ii Eli. there is r smallest II E'lI for which

these regions can intersect, which means there is a k' such that

c(S)II E'Ii = ii (;-A)-'I -' =I (A'-B)-I -'

From the definition of sep\, it is clear that sepA(A.B) is less than or equal to

both 11 (X-A)-111 -1 and 1I (-1-S)-li '. Thus.

w(S)tI E'II 2 sepk(A.B)
or, substituting the value of x(S) and rearranging

IIE at sep,(A.B)II'! I P II + VII -P-11- -1

Since II E' II is the smallest value for which the regions can possibly inter-

sect, the proof is complete. Q.E.D.
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Lemma 2. 10, plus the inequality

11 P11 + -/1- Pll - i5 2 11 P11

show that the bound of Theorem 4.8 is always larger than the bound of

Theorem 4.5. The two bounds can be significantly different because sep can

be much smaller than sep.%. Just how much smaller is the subject of the next

chapter, but we present an example to illustrate typical behavior. If

A 1 and B =-A

are both n by n matrices, then

sep(A.B) = G(s"- 1) and sep(A.B) = 9(rl )

(the notation f =ft ) means f is exactly of order g: f =0(9) and g =O(f)).

We discuss this example in detail in chapter 5. Experience in constructing

examples like this led us to our conjecture in chapter 8 that even though sep

and sep, are almost always close, when they are far apart they can differ by

at most a square as in the example.

An interesting corollary of this theorem holds when T is block diagonal:

Corvary 4.7: Suppose T is bloci diagonal:

Then

di~s2(a . q2) = sep.(A.B) (4.4)

%Z sep,%(A.B) L dissg(a 1 . a2 ) Zt sepA(A.B) (4.5)

In particular, if A=(DA and B =Bt then

dizs(al . oa) = min sepA(A . B1 ) (4.6)4
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Proof: P)I is clearly 1. Thus, the lower bound in Theorem 4.5 equals the

upper bound in Theorem 2.8, proving (4.4). (4.5) follows similarly. (4.6) fol-

lows from Lemma 2.12. Q.E.D.

Thus, diss2 (a1 , a2) satisfies the same divide and conquer paradigm as do

sep (Lemma 2.6) and sepx (Lemma 2.12). In particular, there is a smallest

perturbation (measured with • Ii and not ] ) with the same block diago-

nal structure as T. This proves the claim made about the T in (4.1). since it

is block diagonal.

4.4 When is the Lower Bound a Good Estimate?

In this section we discuss when the lower bound of Theorem 4.6 is likely

to be sharp. We have already seen that it is sharp for block diagonal

matrices. We will show that it is also sharp for 2 by 2 matrices, and nearly so

when A is I by I and B is diagonal (we will need this special case in chapter 8

on probabilistic bounds). We then present two examples when the lower

bound is much too low: in the ftrst example A is 1 by 1 and B is a Jordan

block, and in the second both A and B are 2 by 2 diagonal matrices. This

second example leads to a "combinatorial" improvement on our new lower

bound.

LAmmea 4.8: If

is 2 by 2, then

diss 1 (0 1 , 7) = diSS(a , = a2 sep?, .b b

lb-al
2(1c I +V I'+ b-al )

Furthermore, this last expressions also equals both dissg(al , a . path) and
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disss(al . Cr2. path).

Proof: Choose w on the unit circle so that c/ (6 -a) is real and nonnegative.

Then choose 0 so that

cot V/2 = W
b -

Let

P = 11 P11 ="/1+ I c 12/l- 16-a

It is easy to see that the matrix

0 sin'd 5CO34

is unitary, and that

cz~b
2

T= QTQ= (b-a) a+b
2 (P +vF714 2

where - represents a complicated expression that is not important. Clearly,

by changing the lower left entry of T' to 0 we will change T' to a matrix with a

double eigenvalue at (a+b)/ 2. Both the two norm and Frobenius norm of this

rank one perturbation are equal to the lower bound in Theorem 4.6. A little

manipulation yields the expression in the statement of the lemma. This

proves that the expression in the statement of the lemma is equal to both

dis"(.,, a, path) and diss,(al, 0.path). Since

diss(7, 02, path)adiss(r, . u. region), the lemma follows. Q.E.D.

The next example of the lower bound being nearly sharp is the matrix T

with a I by 1 block A=[a], an n by n diagonal block B-diag(bi). and a 1 by n

block C=[c .. . :
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[EL C CS

b,j

T =
We need to use this example in chapter 8 when we show that our new lower

bound is likely to be sharp.

The geometry of this example is simple. sep%(A,B)=minj -bj /2; say

the minimum occurs at i=i,. VIfl PjZ-=maxlct/(ct-bt) ; say the maxt

occurs at i=ip. j a-bts) gives the distance from a to the closest eigenvalue

of B. and II P Ij gives the maximum instantaneous speed at which a can move

under perturbations in T [Kato2]. Therefore it makes sense that the smal-

lest perturbation needed to make m hit an eigenvalue of B be approximately

distance/speed = Ia-bts1 /jIP( = sepj/(2.IIPiI). The algebra is quite

messy, but the proof is similar to that of lemma 4.8: pick a unitary matrix Q

IcosO 'Osind1

= sin3 a
(d is a real angle and I w=1) so that

b j1 a+btP-btsj

* represents a complicated expression that is not important, and 6 is the per-

turbation which makes the eigenvalue a move to bt. The exact formula for

I6 I is rather complicated, but it is easy to see that when a is much closer to

bj, than btP, 161 cannot exceed the lower bound in theorem 4.6 by more than

a small factor.

From lemmas 2.1 and 2.3. we see that iftB can be diagonalized by a simi-

larity of condition number r- then the lower bound can not be too low by

more than a factor of 0. Thus, it should come as no surprise that our first
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example of when the lower bound is not sharp has A 1 by 1 and B an n by n

Jordan block, since a Jordan block is the "least diagonalizeable" matrix of all:

T . (4.7)

We will see that the upper bound sepA(AB)=9(er), the lower bound = 9 (02R),

and diss2 (a 1 , a)=9(cf+'), thus, neither the upper nor the lower bound is

asymptotically correct, but the upper bound is a much better estimate than

the lower bound for large nt. The proof that diss2 (al. G)-O(tA 1 ) will follow

from considering perturbations only in the lower left corner, and the proof

that diss2 (o, .,)fl(a' 
+1 ) (i.e. diss2(al, a,) is decreases no more quickly

than e" + ) will follow from analyzing the characteristic polynomial of T+E.

where E is a general perturbation.

That sepx(A.B)=e(e") follows from Lemma 2.11. Similarly. it is easy to

see that II PII =e(c " ) so that our lower bound on dissg(a' , ag) is 9(c ).

To estimate disc(a1 , a). we consider perturbations in the lower left

corner. A simple computation shows that if we change T,+,., from 0 to

-1 n "

then the 0 eigenvalue and one of the eigenvalues at c coalesce at c/ (n + 1). To

show that dissg(a 1 , a2) cannot be of order e for z>n+ 1 we consider the

characteristic polynomial of T+Ee8 . where 11 ElI =0(I). If E=0 the charac-

teristic polynomial is

det(XI-T) = ( -)! (-e)J v"l t ' = W(Y

where a (e) is a polynomial in c with lowest order (dominating) term ca+i-

for j21 and a0=O. It is easy to see that
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det(-T-E) = a()AJ

where a '(t) has the same dormnating term as %,(c) for ) e I ead)O(t').

By changing variables to uV t the characteristic poiynomial becomes

det(? I-T-E) = cu*I (u(u-sl).p(ua.ra . 1,

where p(O)=O and its remaining coefficients are 0( 1C . V, ,Is 1 , 1 then

the eigenvalue at X=0 remains isolated from the einvlu*9 at A2e (u s I) by

the continuity of the roots of a polynonual as functions of the coefficients If

z =n + 1 then this argument breaks down and indeed we have dispiayed a per-

turbation of that magnitude that makes eigenvaluev cosiesce

The next kind of example that shows that the lower bound of theorem

4.8 can be low depends on dim(A) and dim(B) both being at least ?_ The idea

is that sep will be small and II PII large because of nonoverlapping parts of

the spectra of A and B. In other words. sep will be determined by A,(A) and

A(B), and 11 P1j by A2(A) and Ae(B). It will turn out the dissg(al . ag) will be

the smallest perturbation that either makes A,(A) coalesce with KI(B) or

A.(A) coalesce with X2(B). This example will lead to a systematic improve-

ment on theorem 4.8 obtained by considering all possible partitions of a, and

q2; it illustrates the combinatorial complexity of the problem.

Let

1 0
-1= 1+ IA •

1+CJ

Simple computations yield sepj(A.B)=t/2 and IIP) = (1+z)/_e, providing

a lower bound on dissg(ol , oa) of O(s/s) and an upper bound of t/ 2. We will

show that the upper bound is a much better estimate of diss7, 02).

Clearly, to make o1=1-1 , 11 coalesce with a2=11+t , -. +vi. either Ill has
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to coalesce with 1-1, 1+e,. or J-lj has to coalesce with

11, 1+c -1+N%/. Thus

digs2 (al .z) X- mm (dssg(jij .- , -I..-vi i+ej) , dis(C-1+' , * . -C+-+ ))

In other words, dissg(or, a2) is determined by the size of the smallest pertur-

bation that makes -1 coalesce with -1+/; the rest of the spectrum is

irrelevant.

In this example we used the fact that the lower bound of theorem 4.6 is

exact for 2 by 2 matrices, but this was not necessary. In fact, if

E- lo....Oijl is any partition of al. the above argument shows that

dissa(cr. , a) X- min dissg(aj1 . ce-ai)

since some eigenvalue from some a,, must coalesce with something in its

complement a-ali. If we consider all possible partitions El of a, (including

the trivial partition I dl) and similarly all partitions E2 of a2 we obtain the fol-

lowing equality:

Theorem 4.9: Let ;j and &_ be as above for i= 1,2. Then

dissf(al , ag) = max ( max min diss2( 11 , c-at), max min dissz2(-c 2 , 2j))

Proof: That the right hand side is no greater than the left hand side follows

from the previous discussion. Equality must hold because diss2(01 . ,) is one

of the candidates of the maximum on the right. Q..D.

If we substitute the lower bound of theorem 4.8 for each dissg expression

on the right hand side of the last equation, we obtain an improvement of the

theorem. as illustrated by the last example.
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Chapter 5: How Far Apart can the Upper and Lower Bounds on diss2(al. a2 )

Be?

5.1 Introduction

Let us summarize the upper and lower bounds already proven in

theorems 2.10 and 4.6 (we assume T has the structure shown in (2-6), with

aj=a(A) and o2 =a(B)):

Theorem 5.1:

sepN(AB) ;-- diss2(al ,a2, path) (5.1)

a! diss2(a , ar, re:M) se>(ABPII + VI IP1 TZ- 1

and

sep\(A,B) L dissr(aj a2, path) (5.2)

:9 dissg(a 1, o region) sep\(A.B)
I I PI I + V I -Pi -1 _ --1

In this chapter we will analyze how far apart these bounds can be. We will

present only global bounds, valid for all matrices and depending only on the

dimensionality. Probabalistic bounds, which show when the upper and lower

bounds are likely to be close together or far apart, are presented in chapter

B.

Our worst case analysis starts by substituting the upper bound for II P1

of lemma 2.5 in inequality (5.2) ((5. 1) is so similar to (5.2) that we will not

consider it further):

/ sep.\(A,B) -dissc(al a) 2t sep,%(A,B)

1+ ICh, (5.3)
uep(A, B)

sep,(A.B).sep(AB)
sep(A.B) +-II C1l
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sep%(A,)'sep(A.B)

sep(A.B) + 2'If TIJI

We normalize by taking 11 TI ,=1 so that dissj(al, a2) actually measures the

relative change in T. With this normalization sep2 and sep,1. so the

denominator of the last right hand side must lie in the interval [2.4] and is

therefore not important:

Corollary 5-

V2sepN(A.B) 2! dissr(al, . a) -a sepj\(A,B).sep(A.B)/4 . (5.4)

For this coarsening of (5.2) to be realistic, J1 P11 must be near its largest pos-

sible value 1+11 T1I 1 /sep. 11 P11 can fail to be near its bound because U1 CII S

is much less than II T] II; II CII S is a kind of generalized measure of nonnor-

mality of T with respect to the partitioning jajoql, and contributes to the

bound in the simple way shown above. The way in which the upper and lower

bound can differ greatly is for sep to be small. We know from lemma 2.12

that 2 sep% is an upper bound on sep; the question this chapter asks is how

much smaller can sep be than sep?

The results of this chapter are as follows (in this chapter we will make

the convention that nA = dim(A)!dim(B) a 'nB). We show that sep can be no

smaller than a constant multiple of sep A. This means that the lower bound

in (5.2) can be no smaller than a constant multiple of the dim(A)+ 1-st power

of the upper bound. We present examples where the lower bound is actually

the cube of the upper bound. and other examples where it is the square and

either the upper or lower bound may be the more accurate measure of

diss(al, ap. ,xpth). Since I PI provides an upper bound on sep (from

lemma 2.5), we may translate our results into upper bounds on

diss 1 (a. ft , path) depending on U PU. These results, though necessarily
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weaker than the results depending on sep and sepx. reproduce results found

in the literature.

The remainder of this chapter is organized as follows. Section 5.2 sur-

veys historical results. Section 5.3 handles the case dim(A)=1 which works

out especially simply. Section 5.4 discusses the general case dim(A)a2.

FRnally. in section 5.5, we compute dissg(l , a2) and dissz(o1 , a2) exactly for

normal matrices, in which case the path and region dissociations coincide.

5.2 Survey of the Literature

As stated in the introduction, the literature has concentrated on using

II P I for upper bounds on diss(a , a2. path) and diss,( l , a2, path). Here

we mention three previous works, by Ruhe [Ruhel], Wilkinson [Wilkinson3].

and Kahan [Kahanl]. Since Kahan's result, stated below, essentially implies

the other two results, we discuss it first.

Kahan proves the following theorem:

Theorem (Kahan): If )I PII > /ni-+ 1 then

dissz(a I. a 2 , path) 1.22

II Til 11 1) 1)

We prove a stronger result in section 5.4. essentially replacing i PII by an

upper bound depending on sep. Kahan's proof, which is totally different than

ours. could however be modified to use sep instead of II PI. This modified

proof yields the insight that if the R attaining the infimum in definition 2.4 of

sep has well separated singular values (i.e. some near II RI I the rest near

zero), then the exponent -1/nA of 1IP11 appearing in the bound can be

replaced by -1, but we do not pursue this approach further, since it would

lead to a probabilistic analysis similar to that of chapters 5 and 7.
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Wilkinson's result [Wilkinson3] only covers the case A=l and is essen-

tially the same as Kahan's result. Ruhe's bound is on the distance from a

given diagonalizable matrix to the set P of matrices with at least one multi-

pie eigenvalue. and. by an abuse of notation. may be written

max -NI
distR(T. P) !5 M-

and is weaker than the previous two results in that it has a higher root of

I PI in the denominator. It does, however, explicitly depend on the

difference of eigenvalues, which may be small even if II P1 is not large. This

advantage is shared by %Msep as an upper bound.

5.3 The Case dim(A)=1

This case is particularly simple; dissg(a l , cr2) is the dissociation between

a simple eigenvalue and the rest of the spectrum. From lemma 2. 11 we know

that sep and sepk cannot differ by more than a factor of 2:

sepA(A.B) ! sep(A.B) =I) 2 sepA(A,B)

so that inequality (5.4) becomes

-%M aft(B -a • 1) 2! diss(l, -0) ! -.2j(B -a I)

Thus, the lower bound can behave at worst like the square of the upper

bound (recall that II T1I IF=1 so that all bounds are on the relative error). The

distance between these bounds cannot be decreased, as two examples of the

last chapter have shown. Lemma 4.8 shows that for a 2 by 2 matrix the lower

bound in (5.2) is sharp. On the other hand. the example in equation (4.7).

which also had a two point spectrum, shows that the upper bound in the last

equation is more accurate for a case where the upper and lower bounds

differ by a square. Thus, we cannot hope to improve the bounds in (5.2) much

if we only use measures like sep, 11 P11 and similar global measures. We will
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see in chapter 8, though, that the lower bound of (5.2) will be accurate unless

T falls into a set of small probability.

Since lemma 2.5 shows that I Pfl provides a lower bound on sep and

hence sepx,. we can change the upper bounds in (5.1) and (5.2) to upper

bounds in terms of 11 Pi:

Lemma 5.3: Let dim(A)=1. Then

-ii P ti s dd ls( a2 , poh)

1 atdiss2(ra2, gpath)

Proof: Follows immediately from lemma 2.5. theorem a.9, and lemma 2.11.

Q.RD.

This yields the results of Kahan [Kahanl] and Wilcdnson [Wilkinson3].

5.4 The Case dim(A)t2

The goal of this section is to prove

Theorem 5.4: Let T have the structure of (2.6). and assume J) TI) Z=1. Then

2 sep%(A,B) a sep(A,B) ! sep,(AB) '! sepA(A.B) R

nA • (1 + sep -(AB)) "A-I  n 2

In other words, sep can not be any smaller than some constant multiple of

sepXA. After proving this, we will give an example showing that sep can indeed

be as small as sept. We believe that this is worst case behavior, but have not

been able to prove it

Proof: The first inequality in the theorem is just lemma 211. The proof of the

other inequalities are very simple given the expression sep(A.B)=II *+eI-I -

from definition 2.4. This expression means that an upper bound on II *',jII

provides a lower bound on sep(A.B). To compute such an upper bound, con-
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sider the following form of *B5 4 for A =3. which is analogous to the expres-

sion in (2.9):

8 -ai I -a z 1 1 --as,
*.= B-a22.1 c-a.l

B-ass'1

Thus,

(B.-aI. -1  a.j(B -.-all- I)-'(B -a22. I) -

sacS2(B--as 1I )-I(B - a 22- I ) - (B - a
33 -

/ )- + a s, (B - a 11 I / ) -,(B - a w I ) - 1

as j(, -a22 - ) -S(8-am -I) - '

(B-a3s.I)-  1
The largest number of (B--o 1Y- terms that are multiplied together is

three, and they appear in the upper right corner of i,j. Similarly. for any

nA. the largest product of (B-ag.I)-I terms contains nA of them and occurs

in the upper right corner of *,lj. Now since II (B-a u'Il)- I -1 is clearly an

upper bound for sep,% for any i, II (B-a -I)-1 ' is a lower bound for sepj "' and

so the norms of the block entries of .j are bounded above by sepj"A times

a constant. Thus 1 1I 'Ija I is itself bounded above by sep; - A times some con-

stant c,- depending only on nA. Taking reciprocals, we see that

uep -II t j!4j- 1 .sep:"

as desired.

More precisely. we use the block matrix norm

114 A1 iiuo L IIMiv I

where U V is a square subblock of 4. If there are nA blocks Mq in any row or

column of M, then it is straightforward to show that

lIMII sn!S " fA(,,(
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For example, when nA = dirn(M). then fl MU, is the usual infnity norm (max-

imum absolute row sum norm) of M.

Now we estimate 11 *!7 1. Since 1 is a common upper bound for the

magnitudes of the off diagonal elements of A. the sum of the upper bounds of

the norms of the blocks in the first row of +I' is

nA (sept' + sepj - (1 + sepj-l)' )
twO

n A (sepj' (1 + sep-I) "A- )

! nA e sep 71 A

(since sepN - 1). This is clearly also an upper bound on the sum of norms of

the blocks in the other rows too. Q.E.D.

Since we are intertested in the case when sepA is very small. bounding it

by 1 as we did in the last equation is rather conservative. A more realistic

bound, true asymptotically for small sep,%. may be derived as follows: from

the expression for *Ij , we see that the coefTicient for the 4 (B-a. I)-I
1.1

(sep -,"'A) term is o4+t.%. Since the aq satisfy a l1 we see that the

last product can be at most (nAd1y(uA 1)/U, implying that for small sepA. sep

is approximately bounded below by (nA -1)( " - 1)/2 sepzd.

As in the dim(A)=1 case, knowledge of 11 P11 provides a lower bound on

sep which in turn provides an upper bound on diss,(c1 . , p at).

diss,(a 1 , G. path) - NM2 sep,. 42 . ( A , 1 sep )/"A
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1c V2 2/ /n

w 3.40( "I'"

Thus, we have an upper bound on disss(al, a. path) essentially proportional

to the nA- th root of 1/ } P)I.

Theorem 5.4 improves results of Kahan [Kahanl], Rube [Ruhel], and Wil-

kinson [Wilkinson3].

Now we present an example to show that sep can indeed be as small as

sepf. Consider the n by n matrices

A = and B = -A r

A simple computation shows that the upper right corner of +.jj (the largest

element) is

2vr(ran-a)

(by Stirling's formula) which means sep is bounded below by the reciprocal

of this quantity and above by n 2 times the reciprocal. Symmetry considera-

tions show that X=O is the value which attains the minimum in the definition

of sep. Since the largest entry in A- ' is

I (A-') I. I -- c-'
we see that sep,% is bounded below by s" and above by nt". Thus, for fixed n

and t approaching zero, we see that sep is bounded below by sept.
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5.5 diss2(aI. a2) and dissE(al , a2) for Normal Matrices

For normal matrices it turns out that we can compute diss2 (al . a2) and

dissff(a, . q2) exactly. This is because a matrix is normal if and only if if can

be diagonalized by a unitary similarity. Thus, the upper triangular form of T

that has been our starting point is actually diagonal, and all projectors are

orthogonal and hence of norm 1. Thus. the upper bound and lower bound we

have been comparing in this chapter are equal and we have

Theorem 5.5: If T is normal, then

diss2 (o1 , a2, path) = diss2 (a 1 , , region)

dissC(a , o2. path) = dissg(a 1 . a2. region)

rain I 1\1- 1\2

2

Proof: The expressions for diss2 (ol . a2, region) and diss2 (a,. a2. path) follow

from the discussion of the previous paragraph. Now let T' be the 2 by 2

diagonal submatrix of T containing V, and X'2 on its diagonal, where , and

A'2 attain the minimum in the statement of the theorem. The claims for

dissg(or. q2. region) and dissr(al, , path) follow directly from applying

lemma 4.8 to T'. Q.E.D.

The perturbation of lemma 4.8 has several interesting properties: from

the construction of lemma 4.8. we see that the perturbed matrix T' is defec-

tive. and hence not normal. Furthermore, even if T is real the T' may not be.

since by perturbing only two eigenvalues. the eigenvalues of T' may very well

no longer occur in complex conjugate pairs, which means it could not be

real. Furthermore. no other perturbation of minimal Euclidean norm can

yield a normal T' because the Wielandt-Hoffman theorem for normal

matrices [Wlkinson2l shows that 1J T-T'iJ jr must be at least v/2sep%. We exhi-

________
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bit such a perturbation in the next paragraph.

If. however, we measure perturbations with Ij fl instead of 1). we can

find a minimum norm perturbation yielding a T' which is normal, although it

may not be real if T is. We accomplish this by using a rank 2 perturbation

instead of the rank 1 perturbation of lemma 4.8. Simply observe that 6T in

T + T ffi b +-b - a +b r'

2 ,2 ,
has 2-norm Ia-b 1/2 = dissg(l, ar), Euclidean norm V.dissg(a 1 . ca. and

rank 2. Applying this construction to the two closest eigenvalues X'l and K1' of

*I and a2 clearly produces a normal T'. This T may not be real if T is, how-

ever. This may occur if ,'l and Kp are complex but not complex conjugate

pairs, because then the eigenvalues of T' will not occur in complex conjugate

pairs, a necessary condition for being real. Sometimes we can still find a real

T' if this happens: if both Kt have nonzero imaginary parts, then perturb

their conjugates K'l and K'2 to coalesce also. Since the eigenvector(s) belong-

ing to any A is(are) the complex conjugate(s) of the eigenvector(s) belonging

to X. these two rank 2 perturbations are easily seen to be complex conju-

gates so their sum. the total perturbation, is real. If. however, one of the A'

is real, we may not be able to find a real T': consider

with al=1O and o2f1t,-t . The only way for a, and ag to overlap and still have

complex conjugate pairs is for all three eigenvalues to be real. By the

Wielandt-Hoffrnan theorem [Kato2] this requires a perturbation of Euclidean

norm at least 4 and hence a 2-norm of at least vJ73, whereas

dimsg(r, al)=1/2.



75

If T is Herrnitian, we can say still more. Applying what we said about nor-

mal matrices, we see a minimum fl ' perturbation yields a defective and

hence nonhermitian T'. but T' is clearly real if T is. The rank 2 perturbation

above also produces a Herrnitian T' which must be real if T is.
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Chapter 6: A Probabilistic Model

6.1 Introduction

In the last chapter we presented upper and lower bounds on

diss1 (al, q2) and examples which showed that they could be equal or arbi-

trarily far apart. We did not provide any insight as to when they were likely to

be close or distantly separated. We will provide this insight in this chapter

and the next by filling in the details of the following description: There is a

surface in the space of matrices such that our upper and lower bounds on

diss,(c, , ag) are far apart only for matrices within a small relative distance e

of the surface. (We say that a matrix A is within relative distance r of a sur-

face if there is a 6M such that M+6M is on the surface and

16 Z111. !9j M Z.) In fact, we will see that the closer to the surface, the

farther apart the bounds. Furthermore, we can compute an asymptotic

upper bound n(n+1)(,t-l)..V2 on the fraction of the volume of the set of

complex matrices that lie within relative distance e of this surface (n is the

dimension of the matrix). This upper bound shows that the volume of the set

of points within e of the surface goes to zero as r goes to zero. If we interpret

this fraction of the volume of a set of matrices as its probability then we may

state our result as follows: the probability that the ratio of the upper bound

to the lower bound is at most K>1 is at least -n(n +l)(n-1)K2-.E + o(-).

In other words, the ratio of the bounds is large with a low probability. This

same sort of description applies to our bounds for sepA in terms of sep. (the

bound is accurate except within a small distance of a particular surface in

matrix space, and the volume of points within c of the surface goes to zero as

a polynomial in c), to the probability of being able to completely diagonalize

a given matrix, and to other similar quantities which we will discuss in
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chapter 7.

These results will follow from a more general theorem which we will

prove in this chapter. The general problem is estimating the volume of points

within distance v of certain surfaces: homogeneous varieties. A homogene-

ous variety is the locus of solutions of a set of simultaneous polynomial equa-

tions which have the property that if (zj ..... zt) lies on the surface, so does

(=,, . . .. azt) for any scalar a. Since we are interested in relative distance.

it suffices to estimate the volume of points on the sphere of matrices of Fro-

benius norm 1 that lie within distance t of a homogeneous variety. It is a

remarkable fact that, for complex matrices, this volume can be computed to

first order in terms of only two parameters of the variety: its dimension and

its degree. The main result of this chapter is

Theorem 6.3: Let V be a complex purely 2n dimensional homogeneous

variety of degree deg(V) in CN, with n>O. Then the fraction of unit sphere in

CM within Euclidean distance z of V is

,-1 I deg(V) c2(N-n) +

(,-1 ) is the binomial coefficient (N-I)I/ ((n-1)!-(J-n)!)).

Interpreting the fraction of area as a probability, we may restate this as

Prob(distC(M, V) &) = [-1 ] deg(V) + ,2(N-ii)

where M is uniformly distributed on the surface of the unit sphere.

Thus. to first order the probability depends on only two parameters of

the variety: the dimension and the degree. This simple result makes it easy

to compute the probability in many interesting cases; we discuss singular

matrices, defective matrices, and polynomials with multiple roots in the next

chapter.
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We may extend this result to real varieties, but we only obtain an upper

bound on the probability:

Theorem 6.6: Let V be an n-dimensional homogeneous real variety of degree

deg(V) in R", where n>0. Then the fraction of the unit sphere in le within

Euclidean distance a of V. (or equivalently Prob(dist 1 (M . V) ! z) where M is

uniformly distributed on the sphere), is less than or equal to
N+I N.

2 2eg(V).-el + o(-)(B. 1)
e r N-n+1 n+1 .r n

2 ).r 2 " 2 )

In Section 6.2 we will define the terminology just used, and state the

theorems from geometry and algebra we need to prove our result.

Specifically, we will use Weyl's theorem [Weyl, Griffiths] on volumes of spheri-

cal neighborhoods, and Lelong's theorem [Lelong. Thie, Grifiiths) on the area

of a homogeneous variety. In Section 8.3 we state and prove the main result,

and show that the probabilistic interpretation holds for a large class of pro-

bability distributions on the set of matrices. In Section 8.4 we state B~zout's

theorem [Kendig] on the degree of intersection of varieties, which we use to

compute upper bounds on deg(V). In Section 6.5 we extend our results to

real varieties by using Crofton's formula [Sntal6, Grifiths].

Our approach was motivated by a similar analysis of varieties in the

space of polynomials due to Srnale [Smale].

6.Z Notatiou and lammam from Geometry and Algbra

To prove our main result we will need several theorems from geometry

and algebra. The central result we need from geometry Is Weyl's theorem

[WeylGrifithsj which says that the volume of a spherical neighborhood

(defined below) of a manifold of radius c is well approximated by a polynomial
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in s for small c. The dominating (lowest order) term of this polynomial con-

tains, not surprisingly, the area of the manifold as a factor. Our central alge-

braic result is that the area of that part of a complex homogeneous variety

within the unit ball is equal to the degree of the variety times a constant

which depends only on the dimension of the variety [Lelong. Thie, Griffiths).

We will present several ways of computing the degree of a variety in Section

6.4.

Before discussing Weyl's theorem, we need several definitions from

geometry. (See [Guillemin and Pollack] for more details). A subset M of

Euclidean space R]' is called an n-dimrnnsionaL mwaifo d if it is locally

homeomorphic to fr. m =N--n is called the codmen wn of M and is denoted

codim(M). M is called a smooth manifold if the homeomorphism and its

inverse are infinitely differentiable and an analytic manifoLd if they are ana-

lytic.

By -'uiume of an n-dimensional manifold M (Ln) we mean the L-

dimensional Lebesgue measure of M. if it exists. Note that if I >n this volume

is zero. The notation vol(MA) denotes the n-volume of the n-dimensional

manifold M.

An c-tubular neighborhood of M. denoted -r,(M). is, loosely speaking, the

set of all points of RV within Euclidean distance r of M. More precisely, it is

constructed as follows: for each z F. consider the space of all vectors start-

ing at z and perpendicular to Ml (the normal space at z). The endpoints of all

such vectors starting at z and of length at most c form a closed disk of

radius e and center z perpendicular to M; the union of all these disks forms

;"€(M). Moreover, each point in r,(M) is required to lie in exactly one such

disk. In other words, it must be possible to draw exactly one line segment
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from any V E:1(M) to M that is perpendicular to M and of length at most e.

This constraint means that some manifolds only allow tubular neighborhoods

for e smaller than some bound; for example, a circle of radius r only has

tubular neighborhoods for r<r. because otherwise the center of the circle is

not a distance r~r away from a tnique point on the circle. In addition, some

manifolds may not have an c-tubular neighborhood at all (see figure 6. 1).

If M lies entirely within the unit sphere W-1 in Rff. we may analogously

define an c-spherical neighborhood of M, denoted rs(M). to be the set of

points of W- 1 within spherical distance e<ir of M. That is, the length of the

great circle connecting any y iEr"(M) to the nearest point zcM is at most c.

We construct -rf(M) as follows: construct the normal disks to M lying in R as

above, but of radius 2 sin c/ 2 rather than e. Let ;sf(M) be the intersection of

the sphere SP-1 with the union of these disks, subject to the same con-

straints as before. Some simple trigonometry shows that these disks inter-

sect the sphere in points at spherical distance at most r from M. Note that V

must be less than 7r for an r-spherical neighborhood to exist, since there are

two geodesics of length ir perpendicular to M connecting any z EM to its

antipodal point.

Now we can state Weyl's theorem for the volume of c-spherical neighbor-

hoods. Let

" (8.2)
r((m +1)/ 2)(.)

denote the surface area of the unit sphere 3r in Jr 1 (Le. the r-volume).

and

mrm/2)

d,nen(2) th vo-ILot (8.3)denote the volume of the unit ball in R [Santal6],
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Theorem 6.1 (Weyl): Let M be a smooth n-dimensional manifold in &v-1 and

"f(M) an e-spherical neighborhood of M. Let m-N-1-n be the codimension

of M (as a subset of 3-1). Then

vol(T'S(M)) = ,_ k.(M)J() (.4)Q sn (8.4)
SeV=u

where the k,(M) are the integrals of certain differential forms over M, ko(M)

is the volume of M. and

tof n C m + *-1 dr

( 1 +r2)N/2 (8.5)
J(e) = m.(m+2) ... (rm+e-2)

(if e =0 the denominator in J, (c) is 1).

First we will discuss the behavior of J, (r) as a function of a and c, and

then we will discuss the geometric meaning of the theorem.

It is possible to evaluate the integral defining J (r) exactly, but since

later approximations render the higher order terms in r useless, we only

consider its behavior for small r. Thus, we need only examine the behavior of

the integrand for small r as well, for which it obviously equals

(l+r)v/2 = r +(-I + M 1

so that

f (rs" k-. + 0(r@+'))

m.(,+2)... (+s) + o(tan+m+hz)

m.(m+2)... (m+e) 0O(€'"m )

(the last equality follows since tan c = v+O(c3)).
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Combining this last estimate with Wey's theorem yields:

vol(;3 (M)) = .- vow(M) , + O(C " + 2)

= 0M vol(M) elm+ .

What is the geometric meaning of this last expression? Take, for exam-

ple, N=3 and n =0; this corresponds to M being a set of k distinct points on

the unit sphere S in RW. vol(-r,(M)) is then just the area of k spherical caps

centered at the points of M and each of radius c. For small v, this area is

approximately kirsO. which is what (6.8) gives after plugging in

m=N-1-n=2, vol(M)=k, and 1,,=ir. Similarly, we may take N=3 and t=1

corresponding to a one-dimensional curve M of length 1, say, on V .

vol(,r,3(M)) is then just the area of a strip surrounding M of length I and

width 2e, which is clearly approximated by 2.1.,. Plugging ml, ,, =2, and

vol(M)=I into (6.8) yields the same expression. In these simple examples

Weyls theorem tells us the intuitive fact that the volume of the spherical

neighborhood is approximately equal to the volume of an rn-ball of radius r

(0,m e"n) times the volume of M; Weyl's theorem extends the intuition of

these small examples to higher dimensions.

There is also a version of Weyl's theorem for tubular neighborhoods

[Weyl. Griffiths]. It says that the volume of r.(M) Lt a polynimial in £ of

degree at most N (where MCr'). and that the lowest order (dominating)

term in e is 0N-, vol(M) el as expected. We will not use this version of

Wey's theore.

Next we discuss Lelong's theorem on the volume of a homogeneous pure

dimensional complex algebraic variety. First we need several definitions from

algebraic geometry. (See [Kendig] for more details). A variaetj V is the zero
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set of a collection Jp.(z 1. z.) , : of polynomials:

V= J(zi . , ) I p,(z1 ..... z =O for all at•

V is called is called real or complex according to whether the z; are real or

complex. Since V can in general have points of self intersection, it is gen-

erally not a manifold, since it is not homeomorphic to Euclidean space In the

neighborhood of an intersection point. However, points q with relatively

open neighborhoods U. c V that are analytic manifolds are dense in V

[Theorem 4.2.4. Kendig] so that the following definition makes sense: the

dimension of V atp, written dim,(V), is

dim,(V)a lixnsup dim(U,)

$V' a mimdold

We define in turn the dimension of V as the maximum over all p V of

dirn,(V). V is called pure dinsi-ional or pu'rel! n-d eiional if dir,(V)=n

for all p F V. When we refer to the dimension of anything in this thesis, we will

always mean the raL dimension. i.e. the the dimension as a real manifold or

variety, rather than the complex dimension often used for complex objects.

which is exactly half the real dimension. To emphasize that we are dealing

with a complex variety, we will write its real dimension as 2n.

We call V homogeneous if it is a cone; that is if (z . . . z 1 )eV implies

(axl .. az )cV for all scalars a (real scalars if V is a real varie!v, complex

if V is complex). In terms of the defining polynomials L, this means that if

•J . Xn A X ... • XZl ,

then

where d does not depend on J. d is called the order of p,, and written

order(p). We say order instead of degree because we use degree to for the
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more general concept in the next paragraph.

We define the degree of a purely 2n-dimensional homogeneous complex

variety V in C as follows. Let LLv -1 'I be a 2JN-2n dimensional linear mani-

fold (plane) in C1 '. Since dim(L2M- 2) + dim(V) = dim(C") = 2N. we say that

L2J"- " and V are of compl!Lemntary tdimension. Generically. L2'-2 and V

will intersect in a surface of codimension equal to the sum of their codimen-

sions, that is 2N. In other words, their intersection will be of dimension 0 (a

finite collection of points) for almost all planes L2"" . It turns out that for

almost all LeN- 2s this collection will contain the same number of points, and

this common number is called the degree of V. and is written deg(V). (see

[theorem 4.6.2. Kendig]). Intuitively, deg(V) gives the number of "leaves" of

the variety V that a typical plane L' v - 2" will intersect.

Now we can state Lelong's theorem [Lelong. Thie. Griffiths] (or more pre-

cisely just the special case we need):

Theorem 6.2 (Lelog): Let V be a purely 2n-dirnensional homogeneous com-

plex variety in C. where ,i>0. Let V[r] denote that part of V contained in

BN(r) (the N-ball of radius r centered at the origin). Then the volume of

V r] is given by

vol(Vr]) = f " deg(V) • r . (8.7)

This remarkable theorem says the following: the volume of

V/t] = VrlBN(r) is identical to the volume of BN(r) intersected with the

variety consisting simply of deg( V) planes of dimension 2n passing through

the origin. This theorem makes the computation of the leading term in the

expression for volume in Weyl's theorem simple, given the ability to compute

deg(V). The preparation for proving the main result in the next section is

now complete.
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6.3 The Volume of a Spherical Neighborhood of a Complex Homogeneous

Variety

The main result of this chapter is the following theorem. After the proof.

which is quite easy given the preparation of the last section, we will discuss

it.

Theorem 6.3- Let V be a complex purely 2n dimensional homogeneous

variety of degree deg(V) in C, where n>O. Then the fraction of unit sphere

in C"' within Euclidean distance v of V is

[N:1J de(V) ca-" + a( : m  (.8.a)

where 2m=2N-2n, is the codimension of V.

Interpreting the fraction of area as a probability, we may restate this as

Prob(dists(M'V) !9 r) = (N-] ) deg(V) z2- + o(. 2 y) . (6.8.b)

where M is uniformly distributed on the surface of the unit sphere.

Proof- The surface to which we would like to be able to apply Weyl's theorem

is r r VnSw-1, the intersection of V and the unit sphere in C. From Fig-

ure 6.2 we see that a point zES2X- 1 is within Euclidean distance v of V if and

only if it is within spherical distance arcsin e=e + 0(t s ) of V. Thus, the

spherical neighborhood whose volume we would like to measure (and divide

by vol(S y - 1) to get the fraction of S2N-1 ) is - i(V'). Lelong's theorem

tells us vol(V[l]) in terms of deg(V); it will turn out that

vol(V') = 2n • vol(V 1]). Thus, if TrSmo(;) existed, we could use equations

(6.1) through (6.4) to compute

Vl(TruhnS(r)) . vol(V'). (arcuin C)2"m + O((arcsin e)g)

dol(Se)- g) WZ" / I

2n - ft -.deg(V). Om/ rjN + 0(82 ' + )
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= [:1-" deg(V) e + o(e) (6.9)

and be done. Unfortunately. rs., , ( V') does not exist for reasons we will now

discuss. Even so, we will show that the result of the above computation is

valid provided we replace 0(0"+2 1 by o (e2-).

Since V is a variety, it will in general intersect itself and not be a mani-

fold. If we remove the set 1, of these intersection points from V the

remainder V, - V - V, is a manifold (Griffiths]. Furthermore.

din(V,) = dim(Y), and V,, is a connected, open and dense subset of V, so we

lose nothing by considering V,, instead of V [Kendig]. Since any homogene-

ous set like V, intersects the sphere S2N- 1 transversally, the intersection

V,,,'=V,, S' - 1 is also a manifold of dimension one less than V. Unfor-

tunately, V,' also will not generally possess spherical neighborhoods because

it can contain "pinched sections" as illustrated in Figure 8.1. However, if we

remove the open set of all points within Euclidean distance 17 of V from V,',

what remains will be a compact set V, (t) which does have an s neighborhood

for c less than a threshold I(') which may go to zero as 77 does. As t

approaches zero. the volume of V, (17) approaches the volume of V., and the

ratio of the volume of all points within e of V, - Ym (17) to the volume of all

points within t of YV,(ij) goes to zero. Thus, the estimate in (6.9) remains

valid if we replace O(cDm* 2) by o(el).

It remains to show that vol(V) = 2n-vol(Vtl]). We show more generally

that if V is the union of d-dimensional cones, then vol(V) = d.vol(V 1)). This

follows from expressing vol( 41]) as the integral in spherical coordinates of

the volumes of concentric spherical sections of V:

I

vol(1l]) fp-I vol(Y) dp
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vol(V)/d

This completes the proof. Q.E.D.

Our first remark concerns the likely size of the error term a(rbny

Since we are adding volumes of the form

const ec 2" + 0(r2"%+2 )

it is clear that if the first term in (8.9) is an underestimate, it is still an

underestimate by at most O(r2-"2 ). Thus o(-2m) represents an error

bounded above by O(0b1+2). More troublesome is the possibility that the first

term of (6.9) is an overestimate. Consider the V of Figure 8.3, which is the

union of parts of the plane curves y=O and y=z 24 (V is clearly not a homo-

geneous complex variety, but it illustrates our point). If we add the areas of

the r-tubular neighborhoods of these two parts, the sum overestimates the

area we want to measure by the area of the shaded region, which is doubly

covered by the two r-neighborhoods. The area of this doubly covered region

is approximately

{Bew{sn"
f. (2r-z ) dr = O( | I + 1- (2))

-(ft (Vf)

The area we want is clearly dominated by a linear term in r. so we see that

the overestimate depends on 2n. the degree of V.

Our second remark concerns the probabilistic interpretation of (6.7.b).

Instead of choosing a random point M uniformly distributed on 54 N - 1, we

consider choosing a random point M according to the density p and ask

about the distribution Prob(distr(M/ MI I,. V) : t), where II M II z is the

Euclidean norm of At (Frobenius norm if M is a matrix) so that MI I MIl N

must lie on SO1 -N. As long as the random variable M/I I MI N is unformly dis-

tributed on 541". Prob(dist,(M/ I IM II ,. V) r) r) will still be given by the
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expression in (8.7.b). Thus, we may apply our result to any density p for M

which causes MII M I[ to be uniform on S'N-1 . A large class of such densi-

ties p is simply characterized by the symmetry condition p(M) = f (Q M II Z),

i.e. that the density function p is really only a function of dMjj. Two well

known such densities are

In- if 11 M 11' < I
ff 4I2Nz

P(M)=0 otherwise

the uniform density on the interior of the unit ball. and

p(M) = (- 11 -I11 /2,

the normal density on C1f (i.e. each component of M is an independent Gaus-

sian random variable with mean 0 and variance 1).

6.4 EsUmati deg(1') of a Complex Homogeneous Variety

Next we turn to the problem of computing deg(V). There are two tools

from algebra we will use. Both are standard results in algebraic geometry

and can be found in [Chap 4. Kendig].

Theorem 6.4: If the complex homogeneous variety V is defined as the zero

set of the single homogeneous polynomial p. then codim()=2 and V is

called a hzpersuaface. If in addition p is the product of distinct irreducible

factors, then deg(-V)=order(p).

Since several interesting varieties we encounter later are defined by a

single irreducible polynomial whose order we know, this theorem supplies all

data needed to compute the volumes of their spherical neighborhoods to first

order.

Our second tool is a slightly nonstandard version of a well known

theorem:
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Theorem 6.5 (B6zout): Let V be a complex homogeneous variety given as the

zero set of the finite collection of homogeneous polynomials L .li-I. Then

we can bound deg(V) as follows:

1. deg(V) t fl order(P) . (6.10)

The standard version of this theorem says that if varieties VI, each

defined by the single polynomial pt, intersect tranvversaLy. that is, if

codim( " V4) = codim(V),
$31 431

then deg(V) actually equals the product in (6.10). It is no surprise that this

product provides an upper bound when the V do not intersect transversally.

Unfortunately, it seems to give an atrocious upper bound on some occasions,

but it is simple to compute.

6.5 Real Varieties

To extend the results of previous sections to real varieties, we need to

estimate the volume of a real variety. The difficulties in doing this estimate

are illustrated by the following example. Consider the variety V(rx,bc)

defined by the polynomial p=az + by 2 + cz2 . where neither a nor b nor c is

zero. Jf z, y. and z were complex, theorem 6.4 would imply that V had codi-

mension 2 and degree 2. and so by Lelong's theorem vol(VE ]) would be

204=
e . independent of a, b. and c (as long as they are nonzero). For z. V.

and s real. we have the following possibilities, among others: If a =6 = 1 and

c <0. then V is a circular cone with codimension 1 and area 2m'c-1,3.

which approaches 0 when c does, and approaches 2ir as c goes to --. If a. b

and c all have the same sign. V degenerates to a single point at the origin.

Despite these problems, it turns out we can still derive an upper bound

on the volume of a real variety V given only its dimension and degree, where
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by degree we mean the largest finite number of intersection points of V and

almost all planes L of complementary dimension. This bound uses Crofton's

formula (Santa]. We can use this bound in turn to extend Theorem 5.3 to

homogeneous real varieties as follows:

Theorem 6.6: Let V be an n-dimensional homogeneous real variety of degree

deg(V) in RN. where n>0. Then the fraction of the unit sphere in Rf within

Euclidean distance e of V is less than or equal to

r( N I Nr( -)

2 5---. r(NI-)1

where m =N -n is the codimension of V.

Since this theorem includes pure dimensional homogeneous complex

varieties as a special case, it provides an upper bound to the result in

theorem 6.3:

Cor*Uary 8.7: Let V be a purely 2n-dimensional homogeneous complex

variety of degree deg(V) in CM, where n>0. Then the fraction of the unit

sphere in CM within Euclidean distance L of V is less than or equal to

Proof: Convert the gamma functions in Theorem 8.6 to factorials.

Thus, this estimate is too big by the factor [2N) / [) for complex

homogeneous varieties. We will see why this factor appears later from

Crofton's formula.

Proof of Theorem 6.: Just am Lalong's theorem provides an estimate of

vol(VIr) = vol(vr)B(r)) for a complex homogeneous variety V, Crofton's
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formula lets us estimate vol(Vfr]) for real varieties. Given this estimate

(Lemma 8.8), the rest of the proof is identical to that of Theorem 6.3.

Actually, Lemma 6.8 applies to much more general objects than

varieties (note that the definition of deg(V) makes sense for V a union of

manifolds):

Lemma 6.8: Let V be a countable union of manifolds in RF of dimension n or

lower such that. deg(V) is finite. Let 4Ifr]=V BN(r) be that part of V within

the ball of radius r. Then

Vol(4Vr) 2 F- ,deg(V) -r" (8.12)

Since this theorem includes complex pure dimensional homogeneous

varieties as a special case, it provides an upper bound on the value of

vol(V[r]) given by Lelong's theorem:

Corollary .9. Let V be 2n dimensional in CO. and otherwise as described in

Theorem 8.8. Then

Voi( Vr ]). t 2n Oef ' deg(V)r r' (6.13)

Proof: Convert the gamma functions in Theorem 8.8 to factorials.

Thus. this estimate is too large by the factor (2N) / [ ] or complex

homogeneous pure dimensional varieties, which is the source of the overesti-

mate in Corollary 6.7. Nevertheless, when V=SN -1 in RY (so deg(V)=2) and

r=1, the expression for vol(l41]) given by Theorem 6.8 is exact, so we see we

have traded generality of the hypotheses (unions of manifolds instead of
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homogeneous varieties) for tightness of the bound.

Proof of Lemma 6.8: The proof follows easily from several results of integral

geometry. all of which can be found in [Santal6]. We assume without loss of

generality that V is a manifold; the general result follows by applying the fol-

lowing analysis to each constituent manifold of V and adding the bounds.

Crofton's formula ( equation 14.70, Santal6] expresses the volume of an

n-manifold V in RV in terms of an integral:

i-[ f #(L o (8.14)

The integral is over all N-n dimensional planes LN1 where dL " is the

kinematic dunsity for N-n planes. This means that the measure of a set of

planes is invariant under the group of rigid motions in RN. j(LNV' n V) is the

number of points in the intersection of L" '" and V; by hypothesis this is a

nonnegative integer bounded above by deg(VI) for almost all LN '- . Thus

vol(V) &deg(V) tu'-N~1 f djjN..i 6.5
tl . +I.J . -N[

Applying this to V[r] instead of V and noting that LN-t can intersect V[r]

only if it intersects B"(r), we see that

vo(V deg(I) tl -n f dLm--"(616

tant I

The integral in the last equation is known as a "cross-sectional integral",

(quermassintegral: [Chap 13.6, Santal6]) because it gives the measure of the

met of planes which slice BN(r). From equations (14.1) and (13.46) of SantalO,

we find
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f dLN-a = .. ton In.N-I (6.17)

'-rBN()a toi---

Substituting this in the last inequality yields

vol(V)& deg(V) - r* - (6.18)

which after some manipulation using equation 8.1 yields the bound of the

lemma. Q.E.D. of Lemma 8.8 and Theorem 8.8.

We turn now to estimating the dimension and degree of a homogeneous

real variety V3 We assume Va is given as the locus of zeros of a set Lpaj of

homogeneous polynomials in the real variables Ir 1. We may assume without

loss of generality that each p, has real coefficients. By allowing the Zt to be

complex. Lp.1 naturally determines a complex homogeneous variety VO and

it is natural to ask about the relationship between the degree and dimension

of VC and the degree and dimension *! V&

Theorem 6.10. Let Vcand Vi both be determined by p6j as described above.

Then

dmV!%dim(VC) (8.19)dim(V ) <

and

deg(V 3)! deg(VC) . (6.20)

Proof: The relationship between dimensions follows from the implicit function

theorem, which says that if a point p E VC has a neighborhood U which is a

manifold of dimension 2n, then there is an ordering of the coordinates

z. .. ZN such that near p VC can be parameterized as

where
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got =  9pt(Zl I. . Z )
By restricting the zx to be real (but still within the region of definition), we

see that VI3 can have dimension at most n.

Conversely, such a local parameterization of a real manifold can define

a complex manifold locally of twice the dimension if the functions pi are

defined for complex arguments. In particular, a real plane L(" extends to a

complex plane Lr - '. If Lr-' n V¢ contains at most deg(Ve) points, then

Lj n- VIRCLr-,6f VC can also contain at most deg(Vc) points. Q.E.D.

All of the real and complex varieties we consider can be given as the the

locus of zeros of Lej where each p, has real coefficients, so we can use this

theorem to extend our knowledge about the degree and dimension of com-

plex varieties (see section 6.4) to real varieties. Indeed, for all the varieties

we study, the dimension of V3g will be exactly half the dimension of Va



C9
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Chapter 7- Applications to Matrix Inversion, Rigenvalue Problems, and Poly-

natnial Zero r1nding

7.1 Introduction

In the last chapter we proved two theorems about the fraction of the

unit sphere within distance c of a homogeneous variety. In this chapter we

apply this result to three problems of numerical analysis. In section 7.2 we

compute the fraction of n by nt matrices within s of a matrix of rank at most

r. When r=n-1 this result can be interpreted as the probability distribution

of the condition number of a random matrix. In section 7.3 we compute the

fraction of matrices within c of a matrix with a given Jordan canonical form.

In the simplest case, when the Jordan form contains (at least) one double

eigenvalue, this result gives the probability distribution of the distance from

a random matrix to the nearest defective matrix. In section 7.4 we compute

the fraction of polynomials within c of a polynomial with a given zero struc-

ture. For the zero structure containing (at least) one double zero, this result

gives the probability distribution of the distance from a random polynomial

to one with a double root. Section 7.5 contains the proofs of two algebraic

lemmas needed earlier.

7.2 The Distribution of the Distance from a Randun Matrix to a Matrix of

Rank r

In this section we will apply the general results of the last chapter to the

varieties of n by n matrices containing those of rank at most r. When r =n -1

we are talking about the variety of singular matrices. We adopt the proba-

bilistic interpretation of the results of the last chapter and ask the following

question: if a matrix M is chosen at random so that M/lI M I is uniformly

d tributed on the unit sphere, what is the probability distribution of the dis-
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tance of MI 11 MJJ, to the set of matrices of rank r? Said another way, what

is the distribution of the relative distance from M to the matrices of rank r?

To describe our results, we let VE denote the complex n by n matrices of

rank at most r, and Vj denote the real matrices of rank at most r. When

r=n-1, so that V-1 (42-1) is the set of singular matrices, we can state our

result as follows:

Theorem 7.1: Let Mc be a complex n by n matrix chosen randomly as

described above. Then

Prob(distR(MC/HMII , q -1) ='n(n 2 -1) •s + o(s 2 ) (7.1)
If Mg is a random real matrix, then

Prob(dists(Ma / I M]Jz , j-) i It oo s 1 +() (7.2)

2

We can interpet this theorem in a fashion more common among numeri-

cal analysts. We define the cand~ion number of a (real or complex) matrix as

,e(A) m II ml r I, - i I- i-

As is well known [Eckart]. II M-1) 1 -1 is the Euclidean distance distg from M to

the nearest singular matrix. The condition number is used by numerical

analysts to measure the difficulty of inverting a matrix, because it gives the

naximum relative perturbation that can be caused in M - 1 by a unit relative

perturbation in M. In this notation. Theorem 7.1 can be restated as

Corollary 7.2: If Me is a random complex matrix. then

Proh(''(Mc) a K) = n(n 2-1) K- 2 + o(K- 2) (7.3)

If MR is a random real matrix, then

Prob(ie(M3 ) 2 K) - n('2-1) X-1 + o (-') (7.4)2

Since the condition number is commonly used as a measure of how

difficult a matrix is to invert accurately, Corollary 7.2 measures the likeli-
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hood of a random matrix being hard to invert.

Note that this theorem provides no information at all unless

ft(n 2 -1) K l, i.e. L,'/m(n'T-I) in the complex case, and unless

KAn(n 2 -1)/ 2 in the real case. For real 10 by 10 matrices, this requires K to

be at least 495, already rather large by the standards of some numerical

analysts. Until sharper versions of Theorem 6.3 and 8.6 are forthcoming,

applying these asymptotic formulas in practical circumstances must be done

carefully.

For matrices of rank r <(n-i our results are:

Theorem 7.3: If MC is a random complex matrix, then

Prob(distZ(Mc/ II McIl.', VC) = k(-,r)2• deg(V7) 0(0-02 + o(ee(n-r)') (7.5)

where
w h e r e 1 - Ad eg ( VC) ( r-+ 1 + 1 ) 

(7 .8 )

If M3 is a random real matrix, then

Prob(dist1 (MR/II Ml I z, Vj) ! (7.7)

2'( P(+2

________1 I 2nr +r2+1 r(2nr+r
2

2 2

deg(Vlj) L-• ) +

where I ,£ deg(Vj) , deg(VC).

The important aspect of these formulas is not the constant coefficient,

but the exponent of c. since this exponent describes the behavior of the pro-

bability as a function of t. We see that matrices of lower rank become less

common rather quickly the exponent 2(n --r)g (or (n--r)l) going up as the
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square of the rank deficiency n-r.

We can use Theorems 7.1 and 7.3 to compute various conditional proba-

bilities. For example, one might ask about the probability of a random

matrix being within relative distance t of a matrix of rank r given that it is

within r of a matrix of rank r+1. We compute this simply by dividing the dis-

tribution of the distance to V' by the distribution of the distance to V +' to

get (in the complex case) a constant times v4(-')-.. This quantity tells us

that surfaces of lower rank matrices become increasingly sparser within the

surface of matrices of rank one higher. For example, the density of singular

(rank n-1) matrices within all matrices behaves as t , rank n-2 matrices

within rank n -I matrices as e and so on.

Proof of Theorem 7.1: The proof for VE- will follow immediately from

Theorem 6.3 if we show that VY- 1 is a purely 2n2 -2-dimensional complex

homogeneous variety of degree n. This in turn follows directly from Theorem

6.4 since VE-1 is the zero set of the single irreducible order n polynomial

det(M). Similarly, the result for Vj will follow from Theorem 6.6 if we show

that Vj is an n 2 -1 dimensional real variety of degree at most n. The degree

bound follows from Theorem 6.10 and the dimension from noting that

det(M)=0 is Linear in each nV# so that mil can easily be expressed as a

rational function in the other n2-1 real variables. Q.E.D.

Proof of Theorem 7.3: As with the last proof, the results follow from Theorems

6.3 and 6.6 given the dimension and bounds on the degrees of Yb and 1.j. To

compute the dimension, we use Gaussian elimination to put the matrix in row

echelon form: if M has rank r, then its rows and columns can be permuted so

that the permuted MI' can be factored as LU. L is lower triangular with ones

on the diagonal and nonzeroes below the diagonal only in columns 1 through
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r, and U is upper triangular with nonzeroes only in rows 1 through r. These

nonzero entries serve as local coordinates for V'. and there are 2n--r2 of

them, so that dim(I)=2rn-r 2 , and dim(VC)=2dim(Vj). since the nonzero

entries are all complex in that case. To compute deg(I-Vr), we note that Vc is

given by the collection pJ of all determinants of order r +1 minors of M. of

which there are Ir+1)* The bound on deg(Vc) comes from Bdzout's

Theorem, and the bound on deg(Vj) from Theorem 6.10. Q.E.D.

7.3 The Distribution of the Distance from a Random Matrix to a Matrix with

a given Jordan Canonical Form

Let P1 denote the set of n by n matrices with Jordan canonical form

given by the multiindex J (PI denotes the set of complex matrices, and Pj

the real matrices). J denotes the Jordan form with (generically) m distinct

eigenvalues A* (1.9k!Sm). such that X has bt Jordan blocks of sizes

s . We say generic because within P1 lie lower dimensional

surfaces where distinct eigenvalues A, and Xj become equal, or where the

number of Jordan blocks for a given eigenvalue increase. This is analogous to

the situation in the last section, where the variety of matrices of rank at

most r has the matrices of rank exactly r as a dense open subset whose

complement (matrices of rank less than r) form a lower dimensional sub-

variety. (These statements about P requi,-e proof. we do not even know yet

that P is a variety. These facts will be proven below.)

In this section we answer the following question: if the matrix M is

chosen at random so that M1 II M I is uniformly distributed on the unit

sphere, what is the probability distribution of the relative distance from A to

P1 ? The simplest case occurs when P is the variety of matrices with at least

one double eigenvalue; in this case our result is:
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Theorem 7.4: Let MC be a complex n by n matrix chosen randomly as

described above, and let Pc denote the set of complex matrices with at least

one double eigenvalue. Then

Prob(distu.(Mc/ II MCII z. Pc) = n(n- 1)2(n+ 1) C2 + o (L) (7.8)
If MId is a random real matrix, and Pg the set of real matrices with at least

one double eigenvalue. then

Prob(distg(MR/ II MR1I E, P) ! n(n-1)(n+) + 1) (7.9)

2

For matrices of a general Jordan form J we need to know the degree and

dimension of P1 and Pj. Given this data, the results will follow from

Theorems 6.3 and 6.5 of the last chapter. We compute dim(P i) explicitly

below. We outline a procedure for computing a defining set of polynomials

L I for PA. thus proving that P is a variety and providing an upper bound on

deg(P1) by Bdzout's theorem (Theorem 6.5). We will not display p. or com-

pute this upper bound, however, because they are very messy and do not

illuminate the structure of P1 nearly as much as its dimension, which we do

compute explicitly.

Theorem 7.5: Let J and pa be defined as above. Then the codimension of Pj

(and the exponent of t in Theorems 8.3 and 6.5) is

coi(t)codim(PA) a
codim(Pj) = 2 = - ma + 2, (i-i) - (7.10)

2 hul tag
where the sum from i =2 to bt is zero if bk=1. If all the bt=l. so that there is

one Jordan block per eigenvalue. this simplifies to

codir(PI[)= codim(PI) =n -m (7.6)
2

Thus. if there is only one Jordan block per eigenvalue, the codimension

depends only on the number of distinct eigenvalues (matrices with one Jor-

dan block per eigenvalue are called noandrogatonry).
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Proof of Theorem 7.4: The proof for Pc will follow immediately from Theorem

6.3 if we show that Pc is a pure 2n2 -2-dimensional complex homogeneous

variety of degree n(n-1). This will follow in turn from Theorem 6.4 if we show

PC is defined by a single irreducible homogeneous polynomial p of order

n(n -1). This polynomial is called the resuUant of the characteristic polyno-

mial of the matrix M and its first derivative, whose properties we record in

the following lemma:

Lemma 7.7: Let M be a matrix of n 2 indeterminates mv. Let

p(A.m.q) = det(M-.I) be its characteristic polynomial. Then

i.e. the resultant of p and its derivative is a polynomial in the mq which is

1) zero f and only if Ml has a multiple eigenvalue.
2 homogeneous of degree n(n- 1). and
3 irreducible.

Proof: see Section 7.5.

The result for PI follows from Theorems 6.6 and 6.10. This completes

the proof of Theorem 7.4. Q.KD. of Theorem 7.4.

Proof of Theorem 7.5: This theorem was originally proven in [Arnold] and

discovered independently by us. Since the proof is short and provides and

interesting application of Lie groups to numerical linear algebra. we sketch it

here.

Let M be a matrix with Jordan form J. Frobenius's theorem

[Gantmacher] characterizes all matrices which commute with M. and shows

in particular that they form a linear manifold of dimension

hal tul

for real matrices, and 2 a (J) for complex matrices. Now consider the Lie
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group GL(n,C) of nonsingular n by ni complex matrices, which has dimension

2n. Let ZU denote the centralizer of M in GLn,C). that is. the set of all non-

singular matrices which commute with M. We know dim(Z5 ) by the result

just stated. It is easy to see that Z, is a closed subgroup of GL(n,C). so that

the quotient space GL(n,C)/ ZM is a manifold of dimension 2 (n2 - z(J))

[Sternberg]. This quotient space is naturally diffeomorphic to the set Sm of

matrices which are similar to M, since Z1MZ I = ZgMZi l if and only if Z,

and Z 2 are in the same coset of ZM. Now we claim S,,xC" (the Cartesian pro-

duct), which has dimension 2. (m + n - a (J)), is locally diffeomorphic to

P1. The diffeomorphism simply takes the j-th component of the C" factor

and adds it to the m-th distinct eigenvalue of Sm. Subtracting dim(SgxC"')

from 2n yields the value of codim(PI) claimed in the theorem.

The same proof works in the real case, yielding something of exactly half

the codimension of P1. We do need two additional facts: if two matrices over

a field F are similar over an extension field K of F. then they are similar over

F (because a matrix is similar to its rational canonical form over F). and two

complex conjugate eigenvalues of a real ni by ni matrix are determined by

two real parameters, so SMxC"' can be replaced by SjxR" above. Q.E.D. of

Theorem 7.5.

It remains to show how to construct a set of polynomials JpJJ which

determine P8. The construction has two steps. First, we construct a set of

polynomials in the matrix entries mV and the eigenvalues k whose projec-

tion onto the mq coordinates is P1. Second. we show how to eliminate the ,

variables. This elimination requires a generalization of the fundamental

theorem on symmetric polynomials to symmetric varieties.
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A polynomial P(\, . ,) is called synpnmric if for all permutations a

of n objects we have

pw,0 . A.) .p(,.... A.) = p(A, . .. 'f)
The fundamental theorem on symmetric polynomials [VanderWaerden] says

that p(-I ..... a) is symmetric if and only if it can be expressed as a poly-

nomial in the elemantwy symmetric fwtiota E, of the N:

E. rIX

A variety V which is generated by fp(Xl ,. A,)? is called symmetric if for

all permutations a V is also generated by LP,,. Geometrically, this means V

is invariant under the group generated by all reflections in planes N = X. Now

we can state our generalization of the fundamental theorem on symmetric

polynomials to symmetric varieties:

lamna 7.7: Let the variety V be generated by Lp.(X.. X,j). Then V is

symmetric if and only if V is generated by a set of polynomials

q#(. . . . . . )J in the elementary symmetric functions of the At.

Proof: See section 7.5.

For our construction of Lp.4 we also need to know that the union and

intersection of varieties are varieties. For if Lt generates P and Jg gen-

erates Q, then L . qj generates P nQ, and Lk - qjI generates PUQ.

Now we begin the construction. Let ra -- st denote the algebraic
4.1
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multiplicity of the k-th distinct eigenvalue. Now take the eigenvalues and

constrain them with the following polynomials:

\1 = A.. =. . ..... - 1 .

',,I14l = Xg+" 4,,.+ = Am,,+1 ... *,,+ = .g '

.......................

tot to tt1o tot tot

In other words, equate the first n, eigenvalues to X1, the next Mn2 to XS+I.

and so on. Next take the polynomials det(M-X I)=0, where j takes k values

corresponding to distinct Aj. This last set of equations guarantees that each

Xj is an eigenvalue of M. The constraints on the sizes of the Jordan blocks

can be translated into constraints on the rank of powers of M-J • I. because

rank(MI-,\j .I)' - ' - rank(M -,\j .)' equals the number of Jordan blocks of size

at least i. which we denote B1. Thus,

rnk(M -Xi,-.I' = n - t BI

Isal

Clearly. the sl uniquely determine the B1, and vice-versa. Also, any collaps-

ing of XI's or breaking up of Jordan blocks (which occur on subvarieties) can

only make rank(M-X1 ) drop. From Section 7.2 we know how to express the

condition that rank(M-MA.I)t should be no more than some constant in

terms of determinants of minors. All these polynomials taken together, for

all m distinct eigenvalues X, and powers i, determine a variety in lxC"'

space whose projection onto the C0R component is P1.

However, there are many other varieties whose projection is 1 . If

Lv,(X* . ffnq)j generates the variety of the last paragraph, and if a is a per-

mutation of the first na integers, then
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Ve a 1P.(0eo). -MV)~ I aw.(A'* -.t

also has the same projection. Consider the variety V a L VU, and let
a

Jq#(A . wiv) be a finite set of polynomials generating V (we know how to

construct the qp from the p. and the rule for taking unions of varieties), It is

clear from the construction of V that the ideal generated by |q,(A, m)J is

saym abfic, that is J9(A(,), m)J generates the same ideal (and variety V)

for any permutation a. By Lemma 7.7, we see that there is a set of polynomi-

als Jr,,J which also generate V but which are functions of mq and the elemen-

tary symmetric functions E of the 4. But these Et are nothing but the

coefficients of the characteristic polynomial in M, which are polynomials in

mq. Thus, the r 7 themselves are polynomials only in the m.U. These r 7 are

the desired polynomials which generate J7.

7.4 The Distribution o the Distance from a Random Polynomial to One with

a Given Zero Structure

Let ZK denote the set of n-th degree polynomials p(s) p, z- with
tut

zero structure given by the multiindex K (Z denotes the complex matrices,

and Z# the real matrices). K denotes the zero structure with (generically) n

distinct zeroes A, (1-9k!m), such that 4 has multiplicity Y%. We say generic

for the same reason as in the last section: within ZK lie lower dimensional

surfaces within which distinct roots coalesce. This will be proven below.

In this section we answer the question: it the n-th degree polynomial p

is chosen at random so that p / IIp II jr is "uniformly distributed" on the unit

sphere, what is the probability distribution of the relative distance from M to

ZO? (lip l, is the norm (2 ipd')"'.) The reason for the quotation marks

around "uniformly distributed" is our insistence on choosing an n-th degree
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polynomial at random, which means that we eliminate the hyperplane p, =0

from our sample space. This makes sense because if p =0 we have a qualita-

tively different problem because we have a polynomial of different degree.

Smale [Smale] considers the nonhomogeneous problem (p. = 1). but by main-

taining homogeneity we can still the results of chapter 6.

The simplest case occurs when ZK is the variety of polynomials with at

least one multiple root; in this case our result is:

Theorem 7.8: Let Pc be a complex degree n polynomial chosen randomly as

described above, and let Zc denote the set of complex matrices with at least

one double zero. Then

Prob(dist(pc/ I lpClI , Zc) = n(•-n-i) eC + o(C2) (7.11)

If pt is a random real polynomial, and Zi the set of real polynomials with at

least one double zero, then

Prob(distB(p 3 / 1lpllgl . ZI) .9fl fl) . C + O(C) . 0

2

For polynomials of general zero structure ZK we need to know the

degree and dimension of ZE and ZI so we can apply Theorems 6.3 and 6.5 of

the last chapter. We compute dim(Z3 ) explicitly below, but just as in the last

section we only outline a procedure for computing a defining set of polynomi-

als Lpfor Zl .

Theorem 7.9: Let K and ZK be defined as above. Then the codimension of ZK

(and the exponent of c in Theorems 6.3 and 6.5) is

codim(ZI) = codim(Z) = -
2

so that the codimension depends only on the number of distinct eigenvalues.

This theorem is analogous to Theorem 7.5 of the last section for non-

derogatory matrices, which is no surprise since the rational canonical form
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of a nonderogatory matrix is determined uniquely by the characteristic poly-

nomial.

Proof of Theorem 7.9- As in the analogous Theorem 7.4, we use the resultant

r of the polynomial p and its first derivative, which is a homogeneous polyno-

mial of degree n(n-1). Unfortunately. this polynomial does not have the

property of being zero if and only if p has a multiple root., because it is also

zero if p =0, the set of points we eliminated from our sample space above. If

we divide r by p,. we get a polynomial d called the dsc rivvzant of p. which

is homogeneous of degree n2--n-1 and irreducible (a proof of irreducibility

follows from the proof of Lemma 7.7 below). d will be zero if and only ifp is of

degree n and has a multiple zero or p,. =p, -1=0. but this last part is a lower

dimensional subvariety of the forbidden part of our sample space. so does

not contribute to vol(d). The result follows from applying Theorems 8.3, 6.4.

6.6 and S.10 to d. Q.E.D. of Theorem 7.9.

Proof of Theorem 7.10: The m+1 parameters \. (Lgi:cm) and N form a local

coordinate system for the p, as is easily seen by equating powers of z in the

identity

Thus, Zj has dimension 2(m +1) and codimension 2(n-n) as claimed. The

real case follows since complex zeroes occur in complex conjugate pairs. so

all dimensions and codimensions are cut in half. Q.E.D. of Theorem 7. 10.

It remains to show how to construct a set of polynomials pf defining

Z . The construction is analogous to the construction in the last section for

A. FTwst we construct a set of polynomials in the coefficients pt and the

zeroes N which define a symmetric variety whose projection onto the first

components is Z1 . These polynomials simply equate different k and express
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the pt as the usual symmetric functions of the A,. Second. we eliminate the

Xy using Lemma 7.8 just as in the last section.

7.5 Proofs CC lemmas 7.7 and 7.8:

Lemma 7.7: Let M be a matrix of n 2 indeterminates ?%. Let

p0(k"4) = det(M-Xk.) be its characteristic polynomial. Then

r(a ) ;a res(p(,.- q). - d-P(km ). " )

i.e. the resultant of p and its derivative is a polynomial in the v% which is

1) zero if and only if M has a multiple eigenvalue,
2) homogeneous of degree n(n-1), and
3) irreducible.

Proof: The resultant of the two polynomials p(X)= p, Xi E R[X] and
ino

q(x) = X 1, E R[X] is denoted res(p.qX) (or res(p.q) if X is clear from

context) and defined as the determinant

PC Pi , , Prn
P PP PMp

o• q, U

go q, "

go q" gn

where there are m copies of the rows with q entries, and n copies of the

rows with p entries. res(pq) is clearly a polynomial in the pt and qj. If

p,,,Osg, then res(p,q)=O if and only if p and q have a common zero [Van-

derWaerden). If we choose q(X)=p'() to be the derivative of p and p,EO.

then res(p.p') will be zero if and only if p has a multiple root [VanderWaer-

den]. Applying this top(X) = det(M-Xl) proves claim 1 above.
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This choice of p is clearly homogeneous of degree n in the A and Vni. so

p' is homogeneous of degree n-1. By Theorem 6.2 in [Kendig]. their resul-

tant is homogeneous of degree n(n-1). This proves claim 2 above.

The proof of claim 3 takes two steps. First we show that if

T() Xn + rt A'. then res(r.r') is irreducible. Second we show that this
4.0

implies the irreducibility of res(p.p').

To show d = res(r-r') is irreducible, we use another representation of it

in terms of the zeros ak of r: d = 1- (at - aj)2 [VanderWaerden]. Write d as
4tq

the product d=d1 g. Since the dt are functions of the rt. they are sym-

metric functions of the at. Since a,-ap is a factor of d. it must divide either

d or d2, say d-1. By symmetry, all the other factors at-aj must divide d 1, so

d, is a constant multiple of d, and d is irreducible.

Now consider the compnmion matrix of r:

0 1 0 0
0 0 1 0

0 0 0 1
"--I -,,r. _2 "r. -3 " "'7"

r is the characteristic polynomial of this matrix [Herstein]. Now if res(p.p')

factored into P, -Pg. this would induce a factorization of d=res(rr')=dj-d2.

By the result of the last paragraph. P, (say), which corresponds to dl,. will be

a constant multiple of d so that pg cannot depend on any entry m, of the

last row of M, but only on entries vh4 4 1of the superdiagonal. Now take M and

exchange rows i and t as well as columns i and t to obtain the similar

matrix M'. M' has the same characteristic polynomial as M. so we conclude

that pg cannot drpend on entries from row i. Thus pg is constant and

res(p.p') is irreducible as desired. Q.E.D. of Lemna 7.7.



Lemma 7.8: Let the variety V be generated by LP.( 1 . ,)J. Then V is

symmetric if and only if V is generated by a set of polynomials

Iqp(E 1 ... .E)I in the elementary symmetric functions of the A. .

Proof: The if direction is trivial. If there is only one p., the symmetry condi-

tion implies p,(\) = p,(X(t)) for all permutations a. so the only if direction is

equivalent to the fundamental theorem on symmetric polynomials. If there

is more than one p, we argue as follows. We let p. denote the polynomial

PjO,(j)), and V, denote the variety generated by L. By assumption V,= V

for all a. Then the variety , = nV V is generated by jp, all a and al which
9

equals r) V,. where V, is generated by p.., a fixed, all al. If we can show
a

the variety V, is generated by a collection of polynomials over the Ej, we will

be done. We claim this collection of polynomials is the set I- (p.) of all sym-

metric function of the p., themselves. For all the Et(p,) can all be zero if and

only if all the p. are zero, so they generate the same variety. Furthermore.

each A(p,) is clearly a symmetric function of the ), and so by the funda-

mental theorem on symmetric functions, is itself a function of the Et. Q.E.D.

of Lemma 7.8.
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Chapter & Probabilistic Estimates of dissr(a, ,a)

& 1 Introduction

In this chapter we apply the probabilistic estimates of chapters 6 and 7

to measure the likelihood that the various bounds on disss(al , . path) and

disss(7 , a2, regim) of chapter 5 are accurate.

In Section 8.2 we compute the probability that a randomly chosen

matrix is completely diagonalizable. where our decomposability criterion is

based on path clustering. We also compute upper bounds on the probability

of being able to decompose a random matrix into blocks with no more than r

eigenvalues per block, where r>1. In Section 8.3 we estimate the decomposi-

tion probabilities using a different decomposability criterion: a is decompos-

able into U oj if jPj 1 !9 K for all i (Pt is the projection belonging to at). In

Section 8.4 we ask how much larger the upper bound on diss2(al . a2 , path) is

likely to be than the lower bound. We also consider how likely the lower

bound on dissr(a , oe , region) is to be accurate when ar contains exactly

one eigenvalue. Finally, in Section 8.5, we make probabilistic comparisons of

Sep and seph, and compute the probability distribution of sep,. For ease of

presentation we consider only complex matrices in this char'er; probabilis-

tic statements for real matrices are in all cases similar and follow from

analogous theorems for random real matrices in chapter 7.

&2 The Probability of Being Able to Diagonalize a Matrix

We recall our path clustering criterion, introduced in chapter 1: we may

decompose the spectrum a of a matrix M into U at provided no perturbation
t

of Euclidean norm e or smaller can cause an eigenvalue in some ar to

coalesce with an eigenvalue from some other aj. In this section we ask the
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question: if the matrix M is chosen at random in the sense of chapters 8 and

7. what is the probability that M is decomposable into L) }A I? We may apply

the result of section 7.3 to answer this question:

Theorem 5.1: Let M be a random complex matrix and c>O a constant. Then

the probability that all matrices in the set M, of matrices within Euclidean

distance r of M are completely diagonalizable is

1 -n(n_-1) 2 (n+1) • c2+ (c2 )

Proof: A matrix M'EM, is not completely diagonalizable if and only if M is

within r of a matrix with a double eigenvalue. Now apply Theorem 7.4. Q.E.D.

This approach does 7wto extend to computing the probability of being

able to decompose a of a random matrix M into j aj where each a contains
t

at most r eigenvalues (rather than just 1). In other words, when r>1 it - ot

true that a decomposes into U cr, #(aj)tr, if and only if M is not within e of

a matrix with an r +1-tuple eigenvalue. This is the point of Wdkinson's exam-

ple

M= 277 1

417

presented in chapter 1: when v is on the order of 175, a(M) cannot be decom-

posed at all even though M is not within 112 of a matrix with a quadruple

eigenvalue.

It is true, however, that the spectrum of a matrix within r of one with an

r+1-tuple elgenvalue is not decomposable a U at with g(at)!r for all i, so

we still have an upper bound on the probability of such a decomposition:
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Theorem 8.2- Let M be a random complex matrix and e>O a constant. Then

the probability that a(M) is decomposable into a of size at most r<nl (sub-

ject to the constraint imposed by c ) is at most

I - f ('n.")" -O + . (.2).

where f (n,r) depends only on n and r.

Proof: If an n by n matrix has an r +1-tuple eigenvalue it can have at most

n-r distinct eigenvalues. Now apply Theorem 7.5. Q.E.D.

Whether the exponent 2r (or r in the real case) in this last theorem is

best possible is an open question.

.3 The Probability of a Random Matrix having all Projections of Small Norm

In this section we also are interested in the probability of being able to

block diagonalize a random matrix, but now our decomposition criterion is

different: we may decompose the a of a matrix M into U at provided
t

IP II <K for all i, where Pi is the projection corresponding to at. We con-

sider the probability of completely diagonalizing M:

Theorem .3M Let M be a random complex matrix, with one dimensional pro-

jections Pt. Then

Prob(II PII < Kfor alli) z 1 - 2n(-l)(+ 1) -2 + o(-4)

Proof: Since

Prob(llPilI <Kfor all ) = 1 -Prob( some 11 Pl -)

it suffices to show that 2t(n-1)2(t+1)e 2 + o(r 2) is an upper bound on Prob(

some II P II a! K). But by Lemma 5 1. 11 Pt I] IK implies that the relative dis-

tance from N to a matrix with a double eigenvalue is no more than

V2/ (RA-1). and the result follows from Theorem 7.4. Q.E.D.
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We can combine this theorem with Theorem 3.3 to compute the approxi-

mate probability distribution of the condition number K(S) a II SJ " 11 S-111

of either the best conditioned matrix S which diagonalizes a random matrix

M: S-MS = diag(X,). or the nearly best conditioned S computed in chapter

3:

Theorem &4: Let M be a random complex matrix and let S be the nearly

best conditioned diagonalizing similarity (S-MS = diag(A)) computed in

chapter 3. Then

Prob(c(S) <K) I 20n (n •+) J- 2 + o(K-2 )

This inequality is also true if S is the best conditioned similarity.

Proof: By Theorem 3.3. r(S) ! n • max )) Pi, so

iK

Prob(c(S) < K) a! Prob(max 11 Pi 11 < K •

Now apply Theorem 8.3. Since K(S) is an upper bound for ic of a best condi-

tioned SopMA.IJL, these bounds also hold for x(Sa.'77,V). Q.E.D.

The probability of decomposing a of M into U ae where #(au)<r and
t

Pt I I <K is clearly at least this large. but hew much larger we do not know.

&4 How Close are the Upper and LAer Bounds on dissr(al. a2)?

In this section we consider the upper and lower bounds on diss(a I, aa)

%M ep(AB) -disral. 2)-- sep,(A.B) (5.2)
V' se (A.) d~tq, I,) IP II + V I TPI-r "z

for general a, and also in the case where o contains just one simple eigen-

value. (The notation is from Chapter 5: we assume 11 M 1 , and
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We see immediately from Theorem 8.4 that with probability approaching

I as O(K -s ) that the upper and lower bounds above will not differ by more

than a factor of K for aU r.

To ask about the distance between the bounds for a given a,, however, is

not a question that lends itself to a probabilistic interpretation, because

there is no realistic way to probabilistically model the human choice of one

cr or another. Our approach still lets us measure the volume of the set of

matrices for which one bound is more 'accurate than another, though; we

only must not attribute a probabilistic interpretation to it.

We consider the special case where a, contains a single eigenvalue of

multiplicity one. In particular, we claim that for most matrices the lower

bound in 5.1 above is more accurate than the upper bound. This claim is

justified by considering the second example of section 4.4:

for which we showed the lower bound in 5.1 is accurate to within a small fac-

tor. For a general matrix. B will not be diagonal as in the example but by

Theorem 8.4 it will be diagonalizable by a similarity transformation whose

condition number exceeds K on a set of matrices whose volume goes to zero

as K goes to infinity. Thus, by Lemma 21, dissg(al - Gs) will not exceed its

lower bound by more than a factor of K where K is only large on a small set

of matrices: those where B has a Jordan block of size at least 2 with eigen-

value a. In particular. as long as M is not close to having a triple eigenvalue

at a (such matrices having codimension 4 in the complex case by Theorem

7.5), then the lower bound will be nearly accurate.
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8.5 How much smaller than sep. can sep be?

We originally posed this question in Chapter 5, where we showed in Corol-

lary 5.2 that the difference between upper and lower bounds on disss(a l , az)

depended on how much smaller Sep could be than sep\. By Theorem 5.2

2 sep>. p-sep~~L 2t -

The example in section 5.4

A- and B = -A T

showed that sep can indeed be as small as sepf when nA>l. When nA> 2 we

have yet to find an example where sep can shrink as fast as sep ,A and

experience in constructing examples suggests that none exist. In this section

we show that it is unlikely that sep and sepx, differ by much; indeed it is

unlikely that they differ much from their trivial upper bounds (see Lemmas

2.8 and 2.15)

sep -4 min I X(A) - Aj (B) I 8 1a)

and

min I?4(A) - X (B)i
Sep2. V (B. l.b)

The experience in constructing examples mentioned above leads us to

conjecture:

There is a constant c, depending only on dimension such that

sp 2 cnsep,
but we will not pursue a proof of this claim here, except to say that it is pos-

sible to prove such an inequality for matrices bounded away from derogatory
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ones.

To prove these claims, we need to introduce yet another nested family of

pejorative varieties. Consider the Euclidean space where the first

nA 2 coordinates represent A and the other nB2 coordinates represent B in

the obvious way. Thus, we may refer to a point in (eIA4U
A E by its coordinates

(A.B). We will need two norms on this space, the usual Euclidean one

II (A.B)IL -n AIII+IIBHJ
and

11 (A.B)II is max (II All, IIB1 g)
Clearly

1I (A.B)Il & 11 (A.B)I} S 11 fl (A.B)lI (8.2)
As usual we are primarily interested in what happens on the unit sphere

t(A.B) : 11 (A.B)II S = 1J. Theorem 5.2 is valid on (and inside) this set, and so

implies that sep and sepA must approach zero simultaneously. This motivates

investigating the set P a J(A.B): sep(A.B) = sep,(A.B) = 01. Not surpris-

ingly, P is a homogeneous variety; in fact it is the zero set of the single

irreducible order nA,- n polynomial det(+A.9) = ±det(*,.A). What is the

shortest distance from a given (AB) to P? In analogy to the notation of

chapters B and 7. we denote the minimum distance dist,((A.B),P) if we use

the 11 • 1, norm, and distg((A.B).P) if we use the 11 " 11 norm. It is immedi-

ate from the definition of sepN(A.B) that sepA(A.B) is precisely the distance

from (A.B) to P in the ]j " norm; we record this fact as

lainma 8.5:

sep\(A.B) = distq((A.B). P)

This immediately suggests applying Theorems 6.3 and 6.4 to P to prove
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Theorem 8.6: Let (A.B) be chosen at random so that (A.B)/I (A.B)II X is

uniformly distributed on the unit sphere in e" Al +%,9. Then

(nA2+n& 2-l)nAnq • r2 + o( 2 ) Prob(seA( JI(AB)(IS !0B

£2(nAF~nB2-1)nAnB. - r + a (0Z)

Proof: The proof is a by now routine application of Theorems 6.3 and 6.4.

combined with Lemma 8.5 and inequality (8.2). Q.E.D.

Note that it is possible to randomly choose a pair (A.B) not only so that

(A.B)/ )1 (A.B)II , is uniformly distributed on the sphere as required by the

theorem but also so that A and B are statistically independent (e.g. let each

entry of A and B be an independent Gaussian random variable with mean 0

and variance 1). We do not know if this method of choosing A and B is a real-

istic model of the distributions induced by choosing the original T matrix at

random, but we will use this method for the rest of this chapter anyway.

We begin by showing that neither sep nor sepA are likely to be

significantly smaller than their trivial upper bounds in (6.2). From Lemma

2.8 we have

in XA) -
min jX(A) - X, () 1a sep(A.B) - (

where SA is a (best conditioned) diagonalizing similarity for A and S& simi-

larly diagonalizes B. Since in our model A and B are chosen independently,

we can use Theorem 8.4 to estimate the distribution of v(S) -(Sm). the

ratio of the upper to lower bounds in the last inequality. A little manipulation

shows that the probability of this ratio exceeding K is O(K-1).

The ratio of the upper to lower bounds on sepA in Lemma 2.15
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min X(A) -Xi(B)I rin IAt(A) -A ,(B)I

2 asep\(A.B) 2t a ( I(SA) - i(S))
is

max •SA) a(SB))
An application of Theorem 8.4 shows that this last quantity exceeds K with

probability O(K-2).

The ratio of the upper bound on sep to the lower bound on sep. a crude

upper bound on sep,./ sep. is

(s) - IC(SB)
2

which from the above discussion exceeds K with probability O(K-1 ).

A more detailed way to bound sep /sep is as follows: we identify a

variety V with the property that for pairs (AB) sufficiently far from V.

sep(A.B)/ sep(A.B) will be bounded above by a constant depending on the

distance from V. From previous discussion we know V has to lie within the set

P where sep-sep)=O. On the set P we know A and B have to have at least one

eigenvalue X in common. By lemmas 2.8 and 2.? (for sep) and lemmas 2.13

and 2.14 (for se%) we know it suffices to look at the parts of A and B with

common eigenvalue X. By lemma 2.12 we know that as long as X is a simple

eigenvalue of either A or B, then sep and sep\ can not differ too much. Thus,

V must consist of those pairs (AB) where A and B have a common eigen-

value . and where both A and B have A as a multiple eigenvalue. This is a

total of 3 independent constraints, meaning V has codimension 3 in the real

case and 6 in the complex. As long as the pair (A,B) does not fall into a small

neighborhood of this set V of high codimension, sepa/ sep will not be too big.



121

Chapter W Relevance of the Probabdistic Model to Finite Preciaioa Calcula-

9.1 Introduction

What relevance does the probabilistic model of the last three chapters

have to actual finite precision calculations? We will see that the model can

predict certain behaviors of algorithms designed to solve the problems of

chapter 7 (matrix inversion, eigendecompositions. polynomial zero finding).

The tool required to analyze these algorithms is backwards error analysis;

using it one can show that unless the problem to be solved is too close to

some set P of ill-posed problems, a "backwards stable algorithm" will com-

pute an accurate answer. For example, engineers have a rule of thumb that

"to get an answer to a certain precision (say 3 decimal places) it suffices to

do the intermediate calculations to about twice that precision (8 decimal

places)" [Kahan2]. It will turn out that the model predicts this behavior by

the measuring the relative rarity of matrices with triple eigenvalues (or poly-

nomials with triple zeros) compared to matrices with double eigenvalues (or

polynomials with double zeros).

The explanatory power of the model is limited by the underlying proba-

bility distribution of problems it assumes: M/I I MIj should be uniformly

distributed, where M is a random problem. Certain classes of problems sim-

ply do not generate this distribution. For example. we will see later that

using Rayleigh quotient iteration to compute eigenvectors of a symmetric

matrix requires solving a sequence of more and more nearly singular sys-

tems of linear equations. In fact, the more nearly singular the system, the

better the resulting answer. It is clearly nonsense to model the set of

matrices being inverted as coming from a uniform distribution. Other classes
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of problems with predilections for producing nearly singular matrices are

least squares problems (when solved using the normal equations) and finite

difference schemes for differential equations. The most significant lkitation

of the model is that it uses a continuous distribution of problems; all points

on the unit sphere are in a certain sense equally likely. In actual computa-

tions, however, the set of possible problems is discrete and finite. There are

only a (huge) finite number of finite precision numbers representable in a

computer. and hence only a finite number of finite precision matrices, poly-

nomials. etc. It will turn out that this discreteness leads to qualitatively

different behavior of algorithms than is predicted by the model. The continu-

ous model makes sense only so long as the finite precision numbers are

dense enough to resemble the continuum. In Figure 9.1. for example, the

volume of the set of points within distance 4 of the curve P is a good

approximation to the number of dots (finite precision points) within distance

4 of P. This is true because the radius of the neighborhood of P (4c) is large

compared to the spacing between finite precision points (e). In Figure 9.2. on

the other hand, the volume of points within distance e/4 of P is not neces-

sarily a good approximation of the number of dots within t/ 4 of P. Thus,

when the radius of the neighborhood of P get smaller than the interdot dis-

tance c. the model breaks down. The breakdown of the model is critical if one

is trying to analyze the behavior of real algorithms running in finite precision

arithmetic. For example, we will see that one can measure the difficulty of

inverting a matrix with the condition number #r'(M)=/j MJ), " 11 M-111. When

using an iterative algorithm to compute the inverse, the number of iterations

needed. if very large, is roughly proportional to te(M) for many algorithms.

Thus, we could ask what (according to the model) is the average number of

iterations needed to invert a random matrix? This is roughly proportional to
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the average condition number. In the case of real matrices, it will turn out

that the model predicts an Wnite average condition number. In fact, the

model predicts that the average condition number of matrices whose condi-

tion numbers are restricted to be greater than K is infinite for any positive

K. This is because the integral expressing the average condition number

looks like

d~z (9.1)

which is infinite for all positive K. However, since there are only finitely many

finite precision matrices, the average condition number of those that are not

exactly singular must be finite. Thus, the model does not supply us any useful

information in this case.

What if we could compute the actual probability distribution of the

number of points within distance c of the variety P of ill-posed problems for

the finite precision case? It would tell us bow many single precision problems

we could solve as a function of the extra precision used in intermediate cal-

culations. For example, in the case of inverting real matrices, if the actual

probability distribution were roughly linear as in the continuous case, then

each bit of extra precision used would allow us to solve half the problems we

couldn't solve before. We present some simulations to substantiate this claim

below. Clearly, such information would be of great use in the design of

numerical algorithms or even computer arithmetic units, because it would

tell the designer how to trade off the cost of arithmetic (which is an increas-

ing function of the number of bits of precision) with the number of problems

the system can solve.

The rest of this chapter is organized as follows. Section 9.2 shows how

backwards error analysis makes the probability model relevant to finite
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precision calculations. Section 9.3 discusses the limitations of the model

mentioned above. Finally, section 9.4 demonstrates the usefulness of knowing

the discrete distribution of problems for analyzing the use of extra precision

arithmetic.

9.2 A Paradigm for Analyzing the Aecuracy of Algorithms

The paradigm for applying the probabilistic model to the analysis of

algorithms is as follows:

(i) Within the space of problems, identify the set P of ill-posed ones.

(2) Show that the closer a problem is to P. the more sensitive the solution

is to small changes in the problem.

(3) Show that the algorithm in question computes an accurate solution for a

problem close to the one it received as input (this is known as "back-

wards stability" [Vilkinsonl]). Combined with the result of (2), this will

show that the algorithm will compute an accurate solution to a problem

so long as the problem is far enough from P.

(4) Compute the probability that a random problem is close to P. Using

this probability distribution in conjunction with the result of (3) we can

compute the probability of the algorithm computing an accurate result.

This paradigm is best explained by applying it to matrix inversion:

(1) The set of matrices P which are ill-posed with respect to inversion are

precisely the singular matrices.

(2) As discussed in section 7.2. the condition number

'( ) II M 1- (9.2)

measures how difficult the matrix * is to invert. More precisely, it

measures how much a relative perturbation in M can be magniied in
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M- 1 [Kahan ]:
t "( = iim sup II (M+6)-' - M-' / I '(9.3)

AM0 116Ml,/ il,(9.3

As also discussed in section 7.2. the condition number can be expressed

in terms of the distance from M to P:

,'(M) = II MII / distg(M. P) (9.4)

as required by the paradigm.

(3) Gaussian elimination with partial pivoting is a standard algorithm for

matrix inversion and is well known to be a backwards stable algorithm

[Wilkinsonl). Backwards stability means that when applying Gaussian

elimination to compute the solution of the system of linear equations

Az=b. one gets an answer - which satisfies (A+6A)2=b, where 6A is

small in norm compared to A. More exactly. let X be the i-th column of

the approximation to M- 1 computed using Gaussian elimination, where

the arithmetic operations performed (addition. subtraction, multiplica-

tion. and division) are all rounded off to b bits of precision. Then X is

the exact value of the i-th column of the inverse of a matrix (M(i)) -'

where M(i) is close to M (the subscript i means column i, and M(i) is

the i-th in a sequence of n by n matrices). In fact

1I JM(i) - MI 1 Z& .f (n)" - 2 • 11 M11 (9.5)

where f(n) is a function only of n. the dimension of M [Wilkinson1].

This last expression can be used to bound the relative error in the solu-

tion X [Wilkinsoni]:

/1 A - (W- H)I S9 e'(M)" ,f(n.)" - *(9
II (W)I, R - e(M). f (n) .2(9

In other words, as long as the bound on the distance from M(i) to M is

not so large that M(i) could be singular, i.e. as long as
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distjr(M, P) > f (,.,). Z 2! EIq'l z11 (9.7)

or, substituting from equation (9.4)

x'(M) . f(n)" 2- < 1 (9.8)

then the relative error in the computed inverse X is bounded. So, as

long the condition number x'(M) is smaller than 26/f (n.), the solution

will have some accuracy, and the smaller ie(M), the more accurate the

soLution.

(4) Now we can apply Corollary 7.2 which gives the probability distribution

of the condition number to estimate the probability that a random

matrix can be inverted accuratel.

prob( 11 X - W% -'1 Z !e 2tr (U IM (n).- e) (99II (M-9),11 1 -) iM Pr- f (9.9)-

which, after some rearrangement (and assuming z<1 of course) equals

-Prob(t'(M) !s a 2

f(n)" (1+r) 2- 6 )

1 -n(n 2 -1) - f(n)' c )Z 2-81 + o(f(n)2 ( 22-

(assuming M is complex and applying Corollary 7.2). This last inequality

only makes sense for

f (n). +-- . 2--

small, that is if the precision 2-6 used in the computation is much

smaller than the precision e demanded of the answer. This restriction

also makes sense numerically.

Similar analyses are possible of standard algorithms to compute eigen-

values and eigenvectors as well as zeros of polynomials [Wilkinsonl, Wilkin-

uon2]. In the case of eigenvalue problems, the ill-posed set P consists of

those matrices with multiple eigenvalues, the higher the multiplicity the

more ill-posed the problem. Why is this? It is well known that the eigenvalues
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of a matrix are algebraic functions of the entries. In particular, if A is a sim-

ple eigenvalue of the matrix A. and if B is another matrix, then the

parameterized matrix A+rB will have an eigenvalue X(c) such that (O)=X

and for e in a neighborhood of 0. A(e) will be expressible as a power series in

e [Kato2]. Interpreting eB as a perturbation in A due to measurement or

roundoff error, we see that the perturbation (e)-A in A's eigenvalue A

depends at worst linearly on e for small c. Now what if A is an m,-tuple eigen-

value of A? Then it is well known [Wilkinson2] that X(s) will generically be

expressible as a power series in el/" for small r. so that a perturbation vB of

order e in A results in a perturbation (s)-A of order el/m in A's eigenvalue.

Since for small r and m>1, e/ll is much larger than e. this means that

errors made in the computation of multiple or nearlyj multiple eigenvalues

are large compared to the errors in a simple eigenvalue, and the higher the

multiplicity of the eigenvalue, the worse the error.

We can relate the error made to the multiplicity of the eigenvalue being

computed in a more precise way. Almost all algorithms used to compute

eigenvalues are backwards stable in the sense that they compute the eigen-

values of a matrix near the one supplied as input. As is the case of matrix

inversion, the distance from the input matrix to the nearby one depends cn

the precision 2 -6 used in the calculations. Thus, the rB perturbation of the

last paragraph is of order 2- 6. Therefore, the error in the computed value of

an m-tuple eigenvalue will be of order 2
- 6l " by the argument of the last

paragraph. In other words, if we do our calculations using b bits of precision.

we can only expect about b / m bits of precision in the computed value of an

m-tuple eigenvalue. If m=-2, for example (a double eigenvalue), we expect to

lose half our precision. This analysis tells us how much precision is needed to

compute eigenvalues accurately to the basic precision 2. Since we lose half
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the precision when computing double eigenvalues, double precision 2- 26 will

get double eigenvalues accurate to single precision. Similarly. m-tuple preci-

sion 2 -  is need to expect to compute m-tuple eigenvalues accurately.

How likely are multiple eigenvalues according to our probabilistic

model? According to theorem 7.5. the codinension of the set of complex n

by n matrices with at least one m-tuple eigenvalue is 2(m.-1). and so by

Theorem 8.3 the distribution of matrices within distance c of one with an M-

tuple eigenvalue is asymptotically proportional to c2( I- 1) . As mn grows, the

exponent of t increases, and OKm-) decreases. Said another way, for small

enough r. matrices with multiple (double or more) eigenvalues are very rare

in the set of all matrices, matrices with triple (or more) eigenvalues are very

rare in the set of matrices with multiple eigenvalues, and so on.

Recall now the engineer's rule of thumb: "double precision in intermedi-

ate calculations is enough to get the answer to single precision." The model

can be used to explain this empirical observation. Most eigenvalue problems

involve simple eigenvalues, and for these single precision suffices to compute

a satisfactory answer. Rarely, one has to compute a nearly double eigen-

value, and for these double precision suffices. Much more rarely, one needs

yet higher precision, but the occurrence of these triple and higher multiple

zeros is so rare that double precision is almost always enough. A similar

analysis applies to computing multiple zeros of polynomials.

The discussion of the last few paragraphs has been far from rigorous,

using asymptotic results of dubious validity to explain an empirical observa-

tion stated without evidence. Nonetheless, it demonstrates the power of the

paradigm stated at the beginning of this section. In the next section we dis-

cuss when the results of the model are indeed inapplicable and misleading.
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We may use the same kind of paradigm as discussed so far to analyze

the speed of convergence of an algorithm rather than its accuracy. In this

case the paradigm is

(V) Identify the ill-posed problems P'.

(2') Show that the closer a problem is to P', the slower the algorithm con-

verges.

(3) Compute the probability that a random problem is close to F. Com-

bined with (2') this yields the probability distribution of the speed of

convergence.

This approach has been used by Smale [Smale] in his average speed

analysis of Newton's method for finding zeros of polynomials.

9.3 ltmitation of the Probabilistic Model

In this section we discuss two examples illustrating the breakdown of the

model. Both examples show behavior of widely used algorithms which

disagrees with the predictions of the model because of the effects of finite

precision arithmetic. In addition, the first example shows how the assump-

tion of uniformity of M1II M I breaks down even in exact arithmetic.

The first example is Rayleigh quotient iteration, which is used to com-

pute the egenvalues and eigenvectors of a symmetric matrix A. If z 0 is an

initial guess at an eigenvector, the algorithm proceeds as follows:

= (A - k,

The idea is that if zt is a good approximation to an eigenvector, then )'+4 (the

Rayleigh quotient) is a good approximation to an eigenvalue, and in turn 2 m+j

is an even better approximate eigenvector. In fact. the asymptotic conver-

gence rate is cubic under some weak assumptions on the distribution of A's
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eigenvalues (i.e. JXrR-A+lI is of the order of J)?ty,-Xtl s when

I Xr , r-k Iis small enough [Parlett]). Note that as Xj converges to an eigen-

value, the more nearly singular the matrix A-k becomes. In exact arith-

metic, of course, if zt is an exact eigenvector, A-k will be exactly singular.

The sequence of matrices to be inverted (actually, one solves the linear

systems (A-k)zI +-z directly rather than compute (A-k)-1 ) becomes

more and more nearly singular, so that the distribution of matrices to be

(conceptually) inverted is far from uniformly distributed. This invalidates the

assumption of the model, even in exact arithmetic. How does Rayleigh quo-

tient iteration behave in finite precision arithmetic? The discussion of sec-

tion 9.1 might lead us to doubt that it works at all, since we showed there

that one can not expect an accurate solution to a nearly singular system of

linear equations. In fact, Rayleigh quotient iteration works extremely well

because the rounding errors committed in the course of computing zj+j

provably conspire to produce an error lying almost certainly in the direction

of the desired eigenvector. In fact, when X has almost converged to an

eigenvalue, the rounding errors will swamp the computation so that Z.,

almost certainly becomes the desired eigenvector and further iterations

serve only to make small, random changes in z without improving its accu-

racy. In other words, there is an effect due to finite precision arithmetic

which makes the algorithm converge very quickly, so the asymptotically

cubic convergence rate is rarely observed for long. Therefore, any average

speed analysis of Rayleigh quotient iteration which ignores the effects of

finite precision arithmetic may be misleading. For a further discussion of

Rayleigh quotient iteration see [Parlett].
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For the second example we return to matrix inversion. As discussed in

section 9.1. the condition number is a measure of the anticipated accuracy

in the computed inverse of a matrix. It can also be used to measure the

speed of convergence of many iterative algorithms for computing the inverse

to within a given precision [Wilkinson2]. Therefore, a reasonable question to

ask is the following: what is the expected condition number of a random real

matrix? Let us see what the model says. Even though we only have an asymp-

totic upper bound on the distribution of K'(M) of the form (Corollary 7.2):

Prob(c(M)!K) ! const • X-1 + o(K-1)

it is clear that for large enough K the probability distribution function will

also be bounded below by a constant multiple of A-1. This is because within

the variety of singular matrices lies a manifold (perhaps small) of codimen-

sion 1 which does have an r spherical neighborhood for sufficiently small r

(sufficiently large K) which by Weyl's theorem has a volume given asymptoti-

cally by a constant multiple of K-1 . Thus, the integral which expresses the

expected condition number will be bounded below by

E"(x'(M)) > const •

z K

and this integral diverges to infinity no matter how large KO is. However,

since there are only a finite number of finite precision matrices, there is

some K 0 such that no finite precision matrix that is not exactly singular has

a condition number greater than K0 . Therefore the value of the integral is

determined entirely by integrating over a range of condition numbers which

do not correspond to any finite precision matrices. Clearly. this model is not

telling us anything useful in this case.

In the case of complex matrices, the corresponding integral does con-

verge. because for sufficiently large oe it is dominated by
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conlst -

which converges. The results are however still not trustworthy because we

are integrating over the region within distance 2- of the variety P of singu-

lar matrices, where 2- 6 is the separation between adjacent finite precision

numbers (see Figure 9.2). where the model breaks down. In the next section

we discuss what we could do if we could extend the model to this region close

toP.

9.4 How to Use the Duicrete Distribution o Points Within Distance C of a

Variety

Before proceeding, we need to say what probability measure we are

going to put on the discrete set of finite precision points. Section 9.3 showed

that no single distribution is good for all applications, but a uniform distribu-

tion remains a neutral and interesting choice. Therefore for the sake of dis-

cussion the probability we asr.gn to the point M will be proportional to the

volume of the small parallelepiped of points which round to M (i.e. the paral-

lelepiped centered at M with sides equal in length to the distance between

adjacent finite precision points). In the case of fixed point arithmetic [Wil-

kinson1]. this means that each point has equal probability, whereas with

floating point arithmetic points near D have smaller probability than larger

points, since points near 0 are closer together than points farther away.

(Actually, the question of the distribution of the digits of a floating point

number has a large literature [Hamming, Bareiss]. The discussion in this sec-

tion does not depend on the actual distribution of digits chosen).

We claim that knowing the probability distribution of the distance of a

random finite precision problem to the set P of ill-posed problems will tell us

bow many finite precision problems we can solve as a function of the extra
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precision used in intermediate calculations. As mentioned before, program-

mers often resort to extra precision arithmetic to get more accurate solu-

tions to problems which are given only to single precision. This extra preci-

sion has a cost (speed) dependent on the number of digits carried, so pro-

grammers usually avoid extra precision unless persuaded otherwise by bad

experiences, an error analysis, or paranoia. Therefore an accurate estimate

of how many problems can be solved as a function of the extra precision used

would not only help programmers decide how much to use but possibly

influence designers when they decide how much precision to make available

in their computer systems.

How does knowledge of this probability distribution tell us how much

extra precision to use? The paradigm in section 9.2 tells us how. A backwards

stable algorithm using extra precision gets an accurate solution to a problem

in a small ball around the input problem. The radius of this ball depends on

the extra precision used. Therefore, we can expect to accurately solve prob-

lems lying within 2-* of P, where 2-4 is the distance between adjacent finite

precision numbers in the input data. since the small ball around the input

problem will be bounded away from the set P. The probability distribution

tells us as before how many problems lie within a given distance of P, and so

it tells us how many problems we can solve that we couldn't solve before.

This discussion has assumed so far that the finite precision input is

known exactly, i.e. that there is no error inherited from previous compute-

tians or from measurement errors. In general there will be such errors, and

they will almost always be at least a few units in the last place of the input

problem. In other words, there already is a ball of uncertainty around the

input problem with a radius equal to a small multiple of the interpoint dis-
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tance 2 - 6. Therefore, it may make no sense to use higher precision to accu-

rately solve problems lying very close to P when the inherited input error is

so large that the true answer is inherently very uncertain. In such situations

programmers usually shrug and settle for the backwards stability provided

by the algorithm, even if the delivered solution is entirely wrong, because

the act of solution has scarcely worsened the uncertainty inherited from the

data, and the programmer declines to be held responsible for the uncer-

tainty inherent in the data.

Nevertheless, we close with an example using the actual discrete distri-

bution. Consider the rather simple problem of inverting 2 by 2 matrices. This

problem is small enough that we can actually exhaustively compute the

desired discrete probability distribution for low precision arithmetic. We did

this for 3, 4, 5. 6 and 7 bit fixed point arithmetic (all numbers lay between 0

and 1 in absolute value), where each fixed point matrix was assigned the

same probability. In all cases, we observed approximately linear behavior of

the probability distribution (as predicted by the continuous model) both for

distances c to the nearest singular matrix larger than 2 -4 (3b!97), and for e

smaller than 2 - 6 (the fraction of problems within 2- 6 of a singular matrix was

about 21-6). This linear behavior continued until c reached approximately

2- 06. and there the graph of the distribution became horizontal and

remained so all the way to the origin, intersecting the vertical axis at about

2-', meaning that all matrices closer to P than approximately 2 - 0 were

exactly singular, and that the fraction of matrices which were exactly singu-

lar was 2-4*. See Figure 9.3 for a rough sketch of this observed probability

distribution. What does this tell us about the use of extra precision? Basi-

oally, as long as the distribution function remains linear, it says that for

every extra bit of intermediate precision, we can solve half the problems we
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couldn't solve before. This regime continues until we reach double precision,

at which point the only problems we can't solve are exactly singular. Indeed,

since

we can clearly compute the inverse accurately if we can compute the deter-

minant ad-bc accurately. Since a. 6, c and d are given to single precision,

double clearly suffices to compute ad -bc exactly.

Of course, exhaustive evaluation of the distribution function is not rea-

sonable for large problems, and evaluating the distribution function becomes

an interesting question of Diophantine approximation.
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